Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có:
\(a+b+ab=a^2+b^2\).
\(\Leftrightarrow a^2-ab+b^2=a+b\).
Ta có:
\(P=a^3+b^3+2020\).
\(P=\left(a+b\right)\left(a^2-ab+b^2\right)+2020\).
\(P=\left(a+b\right)\left(a+b\right)+2020\)(vì \(a^2-ab+b^2=a+b\)).
\(P=\left(a+b\right)^2+2020\).
Ta có:
\(\left(a+b\right)^2\ge0\forall a;b\).
\(\Rightarrow\left(a+b\right)^2+2020\ge2020\forall a;b\).
\(\Rightarrow P\ge2020\).
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}a+b+ab=a^2+b^2\\\left(a+b\right)^2=0\end{cases}}\Leftrightarrow a=b=0\).
Vậy \(maxP=2020\Leftrightarrow a=b=0\).
b)\(A=\frac{27-12x}{x^2+9}\).
Vì \(x^2+9>0\forall x\)nên \(A\)luôn được xác định.
\(A=\frac{27-12x}{x^2+9}=\frac{4x^2-4x^2+27-12x}{x^2+9}=\frac{\left(4x^2+36\right)-\left(4x^2+12x+9\right)}{x^2+9}\)
\(A=\frac{4\left(x^2+9\right)-\left(2x+3\right)^2}{x^2+9}=4-\frac{\left(2x+3\right)^2}{x^2+9}\).
Ta có:
\(\left(2x+3\right)^2\ge0\forall x\).
\(\Rightarrow\frac{\left(2x+3\right)^2}{x^2+9}\ge0\forall x\)(vì \(x^2+9>0\forall x\)).
\(\Rightarrow-\frac{\left(2x+3\right)^2}{x^2+9}\le0\forall x\).
\(\Rightarrow4-\frac{\left(2x+3\right)^2}{x^2+9}\le4\forall x\).
\(\Rightarrow A\le4\).
Dấu bằng xảy ra.
\(\Leftrightarrow\left(2x+3\right)^2=0\Leftrightarrow x=-\frac{3}{2}\).
Vậy \(maxA=4\Leftrightarrow x=-\frac{3}{2}\).
B1:
a, \(4x^2+y\left(y-4x\right)-9\)
\(=4x^2+y^2-4xy-9\)
\(=\left(x-y\right)^2-3^2\)
\(=\left(x-y+3\right)\left(x-y-3\right)\)
1.
b) \(a^2-b^2+a-b\)
\(=\left(a^2-b^2\right)+\left(a-b\right)\)
\(=\left(a-b\right)\left(a+b+1\right)\)
\(2a\)\(:\)\(x+y=2\)
\(\Rightarrow x^2+2xy+y^2=4\)
\(\Rightarrow x^2+y^2=4-2xy\)
\(\Rightarrow4-2xy\)nhỏ nhất
\(\Rightarrow xy\)lớn nhất
Mà x + y = 2 \(\Rightarrow\)x , y không thể là 2 số âm
vì ta cần xy lớn nhất nên x , y không thể khác dấu
\(\Rightarrow\)ta chỉ còn trường hợp x , y đều dương và x + y = 2
\(\Rightarrow xy\)lớn nhất khi và chỉ khi x = 2 ; y= 0 và x = 0 ; y = 2
không chắc nữa
a) \(a^3-b^3\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)\) (*)
Ta có:
\(a-b=1\)
\(\Rightarrow\left(a-b\right)^2=1\)
\(\Rightarrow a^2-2ab+b^2=1\)
\(\Rightarrow a^2+b^2=1+2ab\left(1\right)\)
Ta lại có: \(ab=6\left(2\right)\)
Thay (1) và (2) vào (*) ta được
\(=1.\left(1+2ab+ab\right)\)
\(=1+3ab\)
\(=1+3.6\)
\(=19\)
b) \(a^3-b^3\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)\)(*)
Ta có:
\(a+b=1\)
\(\Rightarrow\left(a+b\right)^2=1\)
\(\Rightarrow a^2+2ab+b^2=1\)
\(\Rightarrow a^2+b^2=1-2ab\left(1\right)\)
Ta lại có: \(ab=-1\left(2\right)\)
Thay (1) và (2) vào (*) ta được
\(=1\left(1-2ab+ab\right)\)
\(=1-ab\)
\(=1-\left(-1\right)\)
\(=2\)
c) \(2\left(a^3+b^3\right)-3\left(a^2+b^2\right)\)
\(=2\left(a+b\right)\left(a^2-ab+b^2\right)-3\left(a^2+b^2\right)\) (*)
Ta có:
\(a+b=1\)
\(\Rightarrow\left(a+b\right)^2=1\)
\(\Rightarrow a^2+2ab+b^2=1\)
\(\Rightarrow a^2+b^2=1-2ab\left(1\right)\)
Ta lại có: \(ab=-2\left(2\right)\)
Thay (1) và (2) vào (*) ta được
\(=2.1\left(1-2ab-ab\right)-3\left(1-2ab\right)\)
\(=2\left(1-3ab\right)-3\left(1-2ab\right)\)
\(=2\left[1-3.\left(-2\right)\right]-3\left[1-2.\left(-2\right)\right]\)
\(=2.7-3.5\)
\(=29\)
d) \(x^3+y^3+3xy\)
\(=x^3+y^3+3xy\left(x+y\right)\) ( Vì x + y = 1 nên GTBT không đổi )
\(=\left(x+y\right)^3\)
\(=1\)
e) \(x^3-y^3-3xy\)
\(=x^3-y^3-3xy\left(x-y\right)\) ( Vì x - y = 1 nên GTBT không đổi )
\(=\left(x-y\right)^3\)
\(=1\)
bạn phải tách từng câu ra. chứ kiểu này k ai trả lời cho đâu
2)
a)x2-y2=(x+y).(x-y)=(87+13).(87-13)=100.74=7400
b)x3-3x2+3x-1=(x-1)3=(101-1)3=1003=1000000
c)x3+9x2+27x+27=(x+3)3=(97+3)3=1003=1000000
4)
a)x2-6x+10=x2-6x+9+1=(x-3)2+1>=1>0 voi moi x
b)4x-x2-5= -(x2-4x+5)= -(x2-4x+4+1)= -(x-2)2 - 1<0 voi moi x
Chứng minh đẳng thức:
1) xét vế trái (a+b)(a-b)=a2-ab+ab-b2 =a2-b2=vế phải
2) xét vt (a+b)(a2-ab+b2) =a3-a2b+ab2+a2b-ab2+b3 =a3+b3=vp
3) (a-b)(a2+ab+b2)=a3+a2b+ab2-a2b-ab2-b3 =a3- b3 =vp
4) (a+b)2=(a+b)(a+b)=a2+ab+ab+b2 =a2+2ab+b2=vp
5) (a-b)2 =(a-b)(a-b)=a2-ab-ab+b2 =a2-2ab+b2=vp
6) (a+b)3 =(a+b)(a+b)(a+b)=(a2+2ab+b2)(a+b) = a3+2a2b+ab2+a2b+2ab2+b3= a3+3a2b+3ab2+b3=vp
7)(a-b)3=(a-b)(a-b)(a-b)=(a2-2ab+b2)(a-b) = a3-2a2b+ab2-a2b+2ab2-b3 =a3-3a2b+3ab2-b3=vp
Bài 2:
a+b+c+d=0
nên b+c=-(a+d)
\(a^3+b^3+c^3+d^3\)
\(=\left(a+d\right)^3-3ad\left(a+d\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)
\(=-\left(b+c\right)^3+3ad\left(b+c\right)+\left(b+c\right)^3-3bc\left(b+c\right)\)
\(=3ad\left(b+c\right)-3bc\left(b+c\right)\)
\(=\left(b+c\right)\left(3ad-3bc\right)\)
\(=3\left(b+c\right)\left(ad-bc\right)\)
1)a2b+ab2=ab(a+b)=2ab
Ta có: (a-b)2\(\ge\)0
=>a2+b2\(\ge\)2ab
=>(a+b)2\(\ge\)4ab
=>22\(\ge\)4ab
=>2\(\ge\)2ab
Vậy...
2)a2b3+a3b2=ab(a2b+ab2)\(\le\)1.(a2b+ab2)(từ câu 1 có 2\(\ge\)2ab)
Chứng minh tiếp tục tương tự ý 1) thì max a2b3+a3b2=2
3)2(ab3+a3b)=(a+b)(ab3+a3b)=a2b3+a3b2+2a2b2\(\le\)2+2.12(Từ câu 2 max a2b3+a3b2=2 ; từ câu 1 thì từ câu 1 có 2\(\ge\)2ab)=4
=>ab3+a3b\(\le\)2