K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 8 2020

\(2b+1=\frac{9}{2a+1}\Rightarrow b=\frac{4-a}{2a+1}\Rightarrow b+2=\frac{4-a}{2a+1}+2=\frac{3a+6}{2a+1}\)

\(M=\frac{1}{a+2}+\frac{2a+1}{3a+6}=\frac{1}{a+2}+\frac{2a+1}{3\left(a+2\right)}=\frac{3+2a+1}{3\left(a+2\right)}=\frac{2\left(a+2\right)}{3\left(a+2\right)}=\frac{2}{3}\)

9 tháng 8 2018

Chào thanh niên lâu lắm mới on à

22 tháng 12 2017

Ta có :\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow2a^2+2b^2\ge a^2+b^2+2ab\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)

Suy ra \(\frac{2011}{2a^2+2b^2+2008}\le\frac{2011}{\left(a+b\right)^2+2008}=\frac{2011}{4+2008}=\frac{2011}{2012}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

9 tháng 11 2023

 

1/\(=4a^2+4b^2+c^2+8ab-4bc-4ca+4b^2+4c^2+a^2+8bc-4ca-4ab+4a^2+4c^2+b^2+8ca-4bc-4ab=\)

\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)

2/

Ta có

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge-2\left(ab+bc+ca\right)=2\)

\(\Rightarrow P=9\left(a^2+b^2+c^2\right)\ge18\)

\(\Rightarrow P_{min}=18\)

21 tháng 1 2021

Không có mô tả.https://olm.vn/thanhvien/phuongeieu chẳng hiều gì về toán học à bạn ?

20 tháng 1 2021

Cosi 2 số : \(ab+\frac{1}{a}\ge2ab\frac{1}{a}=2b\)

\(bc+\frac{1}{b}\ge2bc\frac{1}{b}=2c\)

\(ca+\frac{1}{c}\ge2ca\frac{1}{c}=2a\)

Cộng vế với vế ta được : \(2\left(ab+\frac{1}{a}+bc+\frac{1}{b}+ca+\frac{1}{c}\right)\ge2\left(a+b+c\right)\)

Dấu ''='' xảy ra <=> a = b = c 

*Gỉa sử : a = b = c = 1 ta được : \(A=\frac{1}{1}+\frac{1}{1}+\frac{1}{1}=1\)

22 tháng 7 2020

P = \(\frac{a^2c}{a^2c+c^2b+b^2a+}+\frac{b^2a}{b^2a+a^2c+c^2b}+\frac{c^2b}{c^2b+b^2a+a^2c}\)

P = \(\frac{a^2c+b^2a+c^2b}{a^2c+c^2b+b^2a}=1\)

22 tháng 7 2020

\(P=\frac{\frac{a}{b}}{\frac{a}{b}+\frac{c}{a}+\frac{b}{c}}+\frac{\frac{b}{c}}{\frac{b}{c}+\frac{a}{b}+\frac{c}{a}}+\frac{\frac{c}{a}}{\frac{c}{a}+\frac{b}{c}+\frac{a}{b}}=\frac{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}{\frac{a}{b}+\frac{b}{c}+\frac{c}{a}}=1\)