Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^3}{b+c}+\frac{b^3}{a+c}+\frac{c^3}{a+b}=\frac{a^4}{ab+ac}+\frac{b^4}{ab+bc}+\frac{c^4}{ac+bc}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}\)
\(=\frac{a^2+b^2+c^2}{2}=\frac{1}{2}\)
:33 Phương pháp SOS e chưa học và đọc :)) E làm các pp khác nhá anh :33
Cách 1 :Đặt : \(A=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)
\(\frac{a^2}{ab+ac}+\frac{b^2}{ab+bc}+\frac{c^2}{ac+bc}\)
\(\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\frac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\frac{3}{2}\)
Cách 2 : ( Kĩ thuật điểm rơi ) : Cộng 3 vào hai vế của BĐT rồi sử dụng AM - GM
Cách 3 : Nhân cả hai vế của BĐT với a+b+c
Cách 4 : Kĩ thuật đặt ẩn phụ ( Đặt a+b=x, b+c=y,c+a=z )
cho bài toán mà viết tắt ko hiểu cái j kả
Chứng Minh Rằng