K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 11 2023

Lời giải:

Áp dụng BĐT Cô-si ta có:

$\frac{a^2+b^2}{a-b}=\frac{(a-b)^2+2ab}{a-b}=\frac{(a-b)^2+2}{a-b}=(a-b)+\frac{2}{a-b}\geq 2\sqrt{(a-b).\frac{2}{a-b}}=2\sqrt{2}$

Ta có đpcm.

10 tháng 12 2019

Từ giả thiết  a ≤ 1 , b ≤ 1 , c ≤ 1 ta có  a 4 ≤ a 2 , b 6 ≤ b 2 , c 8 ≤ c 2 . Từ đó  a 4 + b 6 + c 8 ≤ a 2 + b 2 + c 2

Lại có:  a − 1 b − 1 c − 1 ≤ 0   v à   a + 1 b + 1 c + 1 ≥ 0 nên

a + 1 b + 1 c + 1 − a − 1 b − 1 c − 1 ≥ 0 ⇔ 2 a b + 2 b c + 2 c a + 2 ≥ 0 ⇔ − 2 a b + b c + c a ≤ 2

Hơn nữa  a + b + c = 0 ⇔ a 2 + b 2 + c 2 = − a b + b c + c a ≤ 2

⇒ a 4 + b 6 + c 8 ≤ 2

3 tháng 7 2017

 Ta có a² + \(\sqrt{a}\) + \(\sqrt{a}\) ≥ 3a ( 1 ) 

b² + \(\sqrt{b}\) + \(\sqrt{b}\) ≥ 3b ( 2 ) 

c² + \(\sqrt{c}\) + \(\sqrt{c}\) ≥ 3c ( 3 ) 

Cộng từng vế ( 1 ) ( 2 ) ( 3 ) cho ta 

a² + b² + c² + 2 ( \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) ) ≥ 3 ( a + b + c ) = 9 

2 ( \(\sqrt{a}+\sqrt{b}+\sqrt{c}\)) ≥ 9 - ( a² + b² + c² ) 

2 ( \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) ) ≥ 9 - ( a + b + c )² + 2 (ab + bc + ca) = 2 (ab + bc + ca) 

Vậy\(\sqrt{a}+\sqrt{b}+\sqrt{c}\) ≥ ab + bc + ca 

Dấu bằng xãy ra khi và chỉ khi a = b = c = 1

Vậy......

3 tháng 7 2017

ko biết làm thì lượn nhé ngứa mắt

13 tháng 8 2017

3) Đặt b+c=x;c+a=y;a+b=z.

=>a=(y+z-x)/2 ; b=(x+z-y)/2 ; c=(x+y-z)/2

BĐT cần CM <=> \(\frac{y+z-x}{2x}+\frac{x+z-y}{2y}+\frac{x+y-z}{2z}\ge\frac{3}{2}\)

VT=\(\frac{1}{2}\left(\frac{y}{x}+\frac{z}{x}-1+\frac{x}{y}+\frac{z}{y}-1+\frac{x}{z}+\frac{y}{z}-1\right)\)

\(=\frac{1}{2}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)-3\right]\)

\(\ge\frac{1}{2}\left(2+2+2-3\right)=\frac{3}{2}\)(Cauchy)

Dấu''='' tự giải ra nhá

13 tháng 8 2017

Bài 4 

dễ chứng minh \(\left(a+b\right)^2\ge4ab;\left(b+c\right)^2\ge4bc;\left(a+c\right)^2\ge4ac\)

\(\Rightarrow\left(a+b\right)^2\left(b+c\right)^2\left(a+c\right)^2\ge64a^2b^2c^2\)

rồi khai căn ra \(\Rightarrow\)dpcm. 

đấu " = " xảy ra \(\Leftrightarrow\)\(a=b=c\)

21 tháng 8 2021

\(A=\sqrt{\dfrac{b^2\left(a-b\right)^2+a^2\left(a-b\right)^2+a^2b^2}{a^2b^2\left(a-b\right)^2}}\)

\(=\sqrt{\dfrac{b^2\left(a^2-2ab+b^2\right)+a^2\left(a^2-2ab+b^2\right)+a^2b^2}{a^2b^2\left(a-b\right)^2}}\)

\(=\sqrt{\dfrac{b^4+a^4-2ab^3-2a^3b+3a^2b^2}{a^2b^2\left(a-b\right)^2}}=\sqrt{\dfrac{\left(b^2+a^2\right)^2-2ab\left(a^2+b^2\right)+a^2b^2}{a^2b^2\left(a-b\right)^2}}\)

\(=\sqrt{\dfrac{\left(b^2+a^2-ab\right)}{a^2b^2\left(a-b\right)^2}}=\left|\dfrac{a^2+b^2-ab}{ab\left(a-b\right)}\right|\)

Do a,b là số hữu tỉ\(\Rightarrow\)\(\left|\dfrac{a^2+b^2-ab}{ab\left(a-b\right)}\right|\) là số hữu tỉ hay A là số hữu tỉ

31 tháng 7 2017

Áp dụng BĐT AM-GM ta có:

\(\frac{a}{1+b^2}=a-\frac{a^2b}{b^2+1}\ge a-\frac{a^2b}{2b}=a-\frac{ab}{2}\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\frac{b}{c^2+1}\ge b-\frac{bc}{2};\frac{c}{a^2+1}\ge c-\frac{ca}{2}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\ge a+b+c-\frac{ab+bc+ca}{2}\ge3-\frac{\frac{\left(a+b+c\right)^2}{3}}{2}=\frac{3}{2}\)

Xảy ra khi \(a=b=c=1\)

31 tháng 7 2017

tc \(x^2+y^2\ge2xy\left(cauchy\right)\)

\(\frac{a}{1+b^2}=\frac{a+ab^2-ab^2}{1+b^2}=\frac{a\left(1+b^2\right)-ab}{1+b^2}=a-\frac{ab}{1+b^2}\ge a-\frac{ab}{2ab}\ge a-\frac{1}{2}\)(1)

tương tự \(\frac{b}{1+c^2}\ge b-\frac{1}{2}\)(2)

\(\frac{c}{1+a^2}\ge c-\frac{1}{2}\)(3)

từ (1)(2)(3)=> \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge a+b+c-\frac{3}{2}=3-\frac{3}{2}=\frac{3}{2}\left(a+b+c=3\right)\)

=> đpcm