Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\sqrt{1+a}+b\sqrt{1+b}\le\sqrt{\left(a^2+b^2\right)\left(1+a+1+b\right)}\)
\(=\sqrt{2+a+b}\le\sqrt{2+\sqrt{2\left(a^2+b^2\right)}}=\sqrt{2+\sqrt{2}}\)
Dấu = xảy ra khi \(a=b=\dfrac{1}{\sqrt{2}}\)
\(a,\)\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\Rightarrow2a^2+2b^2\ge a^2+2ab+b^2\)
\(\Rightarrow a^2+b^2\ge2ab\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )
\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\text{Cho 3 số dương x, y, z thỏa mãn }x+y+z=3\)
\(\text{Chứng minh rằng }T=\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+xz}}+\dfrac{z}{z+\sqrt{3z+xy}}\le1\)
➤➤➤Chứng minh:
➢ Áp dụng bất đẳng thức AM - GM
\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}=\dfrac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}\left(\text{vì }x+y+z=3\right)=\dfrac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}\le\dfrac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}}=\dfrac{x}{x+\sqrt{xz}+\sqrt{xy}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
➢ Tương tự:
\(\dfrac{y}{y+\sqrt{3y+xz}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
\(\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
➢ Công vế theo vế 3 bất đẳng thức cùng chiều
\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}+\dfrac{y}{y+\sqrt{3y+xz}}+\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)
➢ \(\text{Đẳng thức xảy ra khi }x=y=z=1\)
➤ \(Max_T=1\Leftrightarrow x=y=z=1\)
Ta có :
\(\left(1+a\right)\left(1+b\right)\ge\left(1+\sqrt{ab}\right)^2\)
\(\Leftrightarrow\left(1+a\right)\left(1+b\right)-\left(1+\sqrt{ab}\right)^2\ge0\)
\(\Leftrightarrow1+a+b+ab-1-2\sqrt{ab}-ab\ge0\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)
Dấu \("="\) xảy ra khi \(\sqrt{a}-\sqrt{b}=0\Leftrightarrow\sqrt{a}=\sqrt{b}\)
Theo BĐT Bu - nhi - a - cốp - xki ta có :
\(\left(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\right)^2\le\left(1^2+1^2+1^2\right)\left(a+1+b+1+c+1\right)=3.4=12\)
\(\Rightarrow\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\le\sqrt{12}=2\sqrt{3}\)
Dấu \("="\) xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Vậy đẳng thức đã được chứng minh
Chúc bạn học tốt
Làm chữa lỗi phát:v Đến giờ mới nghĩ ra(thực ra là tình cờ xem lại ngày xưa:(
\(VT=\Sigma\frac{\sqrt{\left(a^2+b^2\right)2ab}}{a^2+b^2}\ge\Sigma\frac{2ab}{a^2+b^2}+3-3\)
\(=\Sigma\frac{\left(a+b\right)^2}{a^2+b^2}-3\ge\frac{\left[2\left(a+b+c\right)\right]^2}{2\left(a^2+b^2+c^2\right)}-3\)
\(=\frac{2\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)}-3=\frac{2\left(a^2+b^2+c^2+2ab+2bc+2ca\right)}{a^2+b^2+c^2}-3\)
\(=\frac{4\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}-3=1\)(qed)
Đẳng thức xảy ra khi a = b = 1; c = 0 và các hoán vị (xét sơ sơ thôi chớ xét chi tiết em không biết làm đâu:v)
P.s: Chả biết có đúng hay không nữa:(( Lần này mà không đúng thì khổ.
Áp dụng BĐT cô -si \(\left(ab\le\frac{\left(a+b\right)^2}{4}\right)\) ta có :
\(\frac{1}{2}\cdot2\sqrt{ab}\left(a+b\right)\le\frac{1}{2}\cdot\frac{\left(a+b+2\sqrt{ab}\right)^2}{4}=\frac{1}{2}\cdot\frac{\left(\sqrt{a}+\sqrt{b}\right)^4}{4}=\frac{1}{8}\)
<=> \(\sqrt{ab}\left(a+b\right)\le\frac{1}{8}\)
<=> \(ab\left(a+b\right)^2\le\frac{1}{64}\)
Dấu '' = '' xảy ra khi a = b = \(\frac{1}{4}\)
BPT <=> \(\sqrt{ab}\left(a+b\right)\le\frac{1}{8}\)
\(\frac{1}{2}\cdot2\sqrt{ab}\left(a+b\right)\le\frac{1}{2}\cdot\frac{\left(a+2\sqrt{ab}+b\right)^2}{4}=\frac{1}{2}\cdot\frac{\left(\sqrt{a}+\sqrt{b}\right)^4}{4}=\frac{1}{2}\cdot\frac{1}{4}=\frac{1}{8}\)