Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)
\(2a+\frac{4}{a}+\frac{16}{a+2}=\left(a+\frac{4}{a}\right)+\left[\left(a+2\right)+\frac{16}{a+2}\right]-2\ge4+8-2=10\)
Dấu "=" xảy ra khi a=2
2)
\(\hept{\begin{cases}\sqrt{a\left(1-4a\right)}=\frac{1}{2}\sqrt{4a\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4a+1-4a}{2}=\frac{1}{4}\\\sqrt{b\left(1-4b\right)}=\frac{1}{2}\sqrt{4\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4b+1-4b}{2}=\frac{1}{4}\\\sqrt{c\left(1-4c\right)}=\frac{1}{2}\sqrt{4c\left(1-4c\right)}\le\frac{1}{2}\cdot\frac{4c+1-4c}{2}=\frac{1}{4}\end{cases}}\)
\(\Rightarrow\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{8}\)
Bạn tham khảo:
Câu hỏi của khoimzx - Toán lớp 9 | Học trực tuyến
\(P^2=\left(9+a^2b^2\right)\left(\frac{1}{a}+\frac{1}{b}\right)^2=\left(\frac{3}{a}+\frac{3}{b}\right)^2+\left(a+b\right)^2\)
\(P^2\ge\left(\frac{12}{a+b}\right)^2+\left(a+b\right)^2=\frac{144}{\left(a+b\right)^2}+\frac{9\left(a+b\right)^2}{16}+\frac{7\left(a+b\right)^2}{16}\)
\(P^2\ge2\sqrt{\frac{144.9}{16}}+\frac{7.4^2}{16}=25\)
\(\Rightarrow P\ge5\)
Đặt P=\(\sqrt{9+a^2b^2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(=\sqrt{9\left(\frac{1}{a}+\frac{1}{b}\right)^2+a^2b^2\left(\frac{1}{a}+\frac{1}{b}\right)^2}\)
\(=\sqrt{\left(\frac{3}{a}+\frac{3}{b}\right)^2+\left(a+b\right)^2}\)
Theo cauchy-schwartz:
\(\left(\left(\frac{3}{a}+\frac{3}{b}\right)^2+\left(a+b\right)^2\right)\left(\left(\frac{3}{4}\right)^2+1^2\right)\ge\left[\frac{9}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+a+b\right]^2\)
\(\frac{9}{4}\left(\frac{1}{a}+\frac{1}{b}\right)+a+b\ge\frac{9}{4}.\frac{4}{a+b}+a+b=\frac{9}{a+b}+a+b\)
Theo AM-GM:
\(\frac{9}{a+b}+a+b=a+b+\frac{16}{a+b}-\frac{7}{a+b}\ge2\sqrt{\left(a+b\right)\frac{16}{a+b}}-\frac{7}{a+b}\)
Mà a+b≥4
\(\Rightarrow\frac{9}{a+b}+a+b\ge2\sqrt{16}-\frac{7}{4}=\frac{25}{4}\)
=>P2≥\(\frac{\left(\frac{25}{4}\right)^2}{\left(\frac{3}{4}\right)^2+1^2}=5^2\)
=>P≥5
Dấu bằng xảy ra khi a=b=2
Vậy minP=5 khi a=b=2
Đặt \(\left(\sqrt{a};\sqrt{b}\right)=\left(x;y\right)\)
\(\left(x+1\right)\left(y+1\right)=4\Leftrightarrow3=xy+x+y\le\frac{1}{4}\left(x+y\right)^2+x+y\)
\(\Rightarrow\left(x+y\right)^2+4xy-12\ge0\)
\(\Leftrightarrow\left(x+y+6\right)\left(x+y-2\right)\ge0\)
\(\Leftrightarrow x+y-2\ge0\Rightarrow x+y\ge2\)
\(P=\frac{x^4}{y^2}+\frac{y^4}{x^2}\ge\frac{\left(x^2+y^2\right)^2}{x^2+y^2}=x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\ge\frac{1}{2}.4=2\)
\(P_{min}=2\) khi \(x=y=1\) hay \(a=b=1\)
cho hỏi là cái 3 = xy + x + y ≤ \(\dfrac{1}{4}\) \(\left(x+y\right)^2\)+ x + y là như nào vậy ??
1) Áp dụng BĐT AM-GM: \(VT\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9=VP\)
Đẳng thức xảy ra khi $a=b=c.$
2) Từ (1) suy ra \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\ge\frac{3^2}{a+b+c}+\frac{1^2}{d}\ge\frac{\left(3+1\right)^2}{a+b+c+d}=VP\)
Đẳng thức..
3) Ta có \(\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\) với $a,b,c>0.$
Cho $c=1$ ta nhận được bất đẳng thức cần chứng minh.
4) Đặt \(a=x^2,b=y^2,S=x+y,P=xy\left(S^2\ge4P\right)\) thì cần chứng minh $$(x+y)^8 \geqq 64x^2 y^2 (x^2+y^2)^2$$
Hay là \(S^8\ge64P^2\left(S^2-2P\right)^2\)
Tương đương với $$(-4 P + S^2)^2 ( 8 P S^2 + S^4-16 P^2 ) \geqq 0$$
Đây là điều hiển nhiên.
5) \(3a^3+\frac{7}{2}b^3+\frac{7}{2}b^3\ge3\sqrt[3]{3a^3.\left(\frac{7}{2}b^3\right)^2}=3\sqrt[3]{\frac{147}{4}}ab^2>9ab^2=VP\)
6) \(VT=\sqrt[4]{\left(\sqrt{a}+\sqrt{b}\right)^8}\ge\sqrt[4]{64ab\left(a+b\right)^2}=2\sqrt{2\left(a+b\right)\sqrt{ab}}=VP\)
Có thế thôi mà nhỉ:v
\(a-b+b+\frac{1}{b\left(a-b\right)}\ge3\sqrt[3]{\frac{\left(a-b\right)b.1}{b\left(a-b\right)}}=3\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
\(VT=a-b+\frac{4}{\left(a-b\right)\left(b+1\right)^2}+\frac{b+1}{2}+\frac{b+1}{2}-1\)
\(VT\ge4\sqrt[4]{\frac{4\left(a-b\right)\left(b+1\right)^2}{4\left(a-b\right)\left(b+1\right)^2}}-1=3\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b=1\\a=2\end{matrix}\right.\)
\(\frac{a-b}{2}+\frac{a-b}{2}+\frac{1}{b\left(a-b\right)^2}+b\ge4\sqrt[4]{\frac{b\left(a-b\right)^2}{4b\left(a-b\right)^2}}=\frac{4}{\sqrt{2}}=2\sqrt{2}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=\frac{3\sqrt{2}}{2}\\b=\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(ab+a+b=\frac{5}{4}\Rightarrow\frac{a^2+b^2}{2}+\sqrt{2\left(a^2+b^2\right)}\ge\frac{5}{4}\)
\(\Rightarrow a^2+b^2\ge\frac{1}{2}\)
\(A=\sqrt{a^4+1}+\sqrt{b^4+1}\ge\sqrt{\left(a^2+b^2\right)^2+4}\ge\sqrt{\frac{1}{4}+4}=\frac{\sqrt{17}}{2}\)
Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)