Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x=\frac{1}{a}, y=\frac{1}{b}, z=\frac{1}{c}, \Rightarrow x+y+z=2\)
Suy ra \(\frac{1}{a\left(2a-1\right)^2}+\frac{1}{b\left(2b-1\right)^2}+\frac{1}{c\left(2c-1\right)^2}=\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\)
Ta có \(\frac{x^3}{\left(2-x\right)^2}+\frac{2-x}{8}+\frac{2-x}{8}\ge3\sqrt[3]{\frac{x^3}{\left(2-x\right)^2} .\frac{2-x}{8}.\frac{2-x}{8}}=\frac{3x}{4}.\)
\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}\ge x-\frac{1}{2}\)\(\Rightarrow\frac{x^3}{\left(2-x\right)^2}+\frac{y^3}{\left(2-y\right)^2}+\frac{z^3}{\left(2-z\right)^2}\ge x+y+z-\frac{3}{2}=2-\frac{3}{2}=\frac{1}{2}\)
dấu "=" xảy ra khi \(x=y=z=\frac{2}{3}\)hay \(a=b=c=\frac{3}{2}\)
1)
\(2a+\frac{4}{a}+\frac{16}{a+2}=\left(a+\frac{4}{a}\right)+\left[\left(a+2\right)+\frac{16}{a+2}\right]-2\ge4+8-2=10\)
Dấu "=" xảy ra khi a=2
2)
\(\hept{\begin{cases}\sqrt{a\left(1-4a\right)}=\frac{1}{2}\sqrt{4a\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4a+1-4a}{2}=\frac{1}{4}\\\sqrt{b\left(1-4b\right)}=\frac{1}{2}\sqrt{4\left(1-4a\right)}\le\frac{1}{2}\cdot\frac{4b+1-4b}{2}=\frac{1}{4}\\\sqrt{c\left(1-4c\right)}=\frac{1}{2}\sqrt{4c\left(1-4c\right)}\le\frac{1}{2}\cdot\frac{4c+1-4c}{2}=\frac{1}{4}\end{cases}}\)
\(\Rightarrow\sqrt{a\left(1-4a\right)}+\sqrt{b\left(1-4b\right)}+\sqrt{c\left(1-4c\right)}\le\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{8}\)
\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=6\)
\(P=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{xy+yz+zx}{3}=2\)
Dấu "=" xảy ra khi \(x=y=z=\sqrt{2}\)
\(a+b+c=6abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=6\)
\(P=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}=\frac{x^4}{xy+2zx}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{\left(xy+yz+zx\right)^2}{3\left(xy+yz+zx\right)}=\frac{xy+yz+zx}{3}=2\)
Dấu "=" xảy ra khi \(x=y=z=\sqrt{2}\) hay \(a=b=c=\frac{1}{\sqrt{2}}\)
Bài 1:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)[a(b+c)+b(c+a)+c(a+b)]\geq (a+b+c)^2\)
\(\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{(a+b+c)^2}{2(ab+bc+ac)}\)$(*)$
Áp dụng BĐT AM-GM dễ thấy: $a^2+b^2+c^2\geq ab+bc+ac$
$\Rightarrow (a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq \frac{(a+b+c)^2}{3}(**)$
Từ $(*); (**)\Rightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\geq \frac{(a+b+c)^2}{2.\frac{(a+b+c)^2}{3}}=\frac{3}{2}$ (đpcm)
Dấu "=" xảy ra khi $a=b=c$
Bài 2:
Áp dụng BĐT AM-GM:
\(\frac{a^3}{b(2c+a)}+\frac{b}{3}+\frac{2c+a}{9}\geq 3\sqrt[3]{\frac{a^3}{b(2c+a)}.\frac{b}{3}.\frac{2c+a}{9}}=a\)
\(\frac{b^3}{c(2a+b)}+\frac{c}{3}+\frac{2a+b}{9}\geq b\)
\(\frac{c^3}{a(2b+c)}+\frac{a}{3}+\frac{2b+c}{9}\ge c\)
Cộng theo vế và thu gọn ta có:
\(\frac{a^3}{b(2c+a)}+\frac{b^3}{c(2a+b)}+\frac{c^3}{a(2b+c)}\geq \frac{a+b+c}{3}=\frac{3}{3}=1\) (đpcm)
Dấu "=" xảy ra khi $a=b=c=1$
a/ Với mọi số thực ta luôn có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\ge0\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Lại có do a;b;c là ba cạnh của 1 tam giác nên theo BĐT tam giác ta có:
\(a+b>c\Rightarrow ac+bc>c^2\)
\(a+c>b\Rightarrow ab+bc>b^2\)
\(b+c>a\Rightarrow ab+ac>a^2\)
Cộng vế với vế: \(2\left(ab+bc+ca\right)>a^2+b^2+c^2\)
b/
Do a;b;c là ba cạnh của tam giác nên các nhân tử vế phải đều dương
Ta có:
\(\left(a+b-c\right)\left(b+c-a\right)\le\frac{1}{4}\left(a+b-c+b+c-a\right)^2=b^2\)
Tương tự: \(\left(a+b-c\right)\left(a+c-b\right)\le a^2\)
\(\left(b+c-a\right)\left(a+c-b\right)\le c^2\)
Nhân vế với vế:
\(a^2b^2c^2\ge\left(a+b-c\right)^2\left(b+c-a\right)^2\left(a+c-b\right)^2\)
\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(a+c-b\right)\)
\(T=a\left(2a+1\right)+b\left(b+1\right)+\frac{2a+3b}{ab}\)
\(T=\left(2a^2+b^2\right)+a+b+\frac{2}{b}+\frac{3}{a}\)
Xét: \(2a^2+b^2=\frac{4a^2}{2}+b^2\ge\frac{\left(2a+b\right)^2}{2}\ge\frac{9}{2}\)
\(a+b+\frac{2}{b}+\frac{3}{a}=a+\frac{1}{a}+\frac{2}{a}+b+\frac{1}{b}+\frac{1}{b}\)
\(\ge4+\frac{2}{a}+\frac{1}{b}=\frac{4}{2a}+\frac{1}{b}\ge4+\frac{25}{3}=\frac{37}{3}\)
Cộng theo vế tìm được min T
hình như sai hay sao á ko có trong đáp án bạn ơi