\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow\sqrt{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2020

\(\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)

\(\Leftrightarrow a+b=a+c+b+c+2\sqrt{\left(a+c\right)\left(b+c\right)}\)

\(\Leftrightarrow2c+2\sqrt{ab+bc+ca+c^2}=0\)

Theo giả thiết \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow ab+bc+ca=0\)

Khi đó \(c=0?\)

Nhầm chỗ nào nhắc mình với nha mình cảm ơn nhiều

9 tháng 8 2020

mình vẫn không phát hiện bạn nhầm chỗ nào

AH
Akai Haruma
Giáo viên
19 tháng 7 2019

Lời giải:

Ta có:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\)

\(\Leftrightarrow ab+bc+ac=0(*)\).

Từ $(*)$ ta thấy: \(c=\frac{-ab}{a+b}< 0\) do $a,b>0$

\(c+a=\frac{-ac}{b}>0\) do $c< 0; a,b>0$

\(c+b=\frac{-bc}{a}>0\) do $c< 0; a,b>0$

Do đó:

\((*)\Leftrightarrow c^2+ab+bc+ac=c^2\)

\(\Leftrightarrow (c+a)(c+b)=c^2\)

\(\Leftrightarrow \sqrt{(c+a)(c+b)}=|c|=-c\)

\(\Leftrightarrow 2\sqrt{(c+a)(c+b)}+2c=0\)

\(\Leftrightarrow (c+a)+(c+b)+2\sqrt{(c+a)(c+b)}=a+b\)

\(\Leftrightarrow (\sqrt{c+a}+\sqrt{c+b})^2=a+b\)

\(\Leftrightarrow \sqrt{c+a}+\sqrt{c+b}=\sqrt{a+b}\) (đpcm)

25 tháng 7 2019

dạ e cảm ơn ak

29 tháng 8 2017

Ta có \(a>0,b>0,\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0,a+c\ge0,b+c\ge0\)

Do đó \(\frac{1}{c}=-\left(\frac{1}{a}+\frac{1}{b}\right)< 0\Rightarrow c< 0\)

Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Leftrightarrow bc+ac+ab=0\)

\(\Rightarrow c^2=c^2+bc+ac+ab\)

\(\Rightarrow c^2=c\left(c+b\right)+a\left(c+b\right)=\left(a+c\right)\left(b+c\right)\)

\(\Rightarrow-c=\sqrt{\left(a+c\right)\left(b+c\right)}\Rightarrow2\sqrt{\left(a+c\right)\left(b+c\right)}+2c=0\)

\(\Rightarrow a+b=a+c+2\sqrt{\left(a+c\right)\left(b+c\right)}+b+c\)

\(\Rightarrow a+b=\left(\sqrt{a+c}+\sqrt{b+c}\right)^2\)

\(\Rightarrow\sqrt{a+b}=\sqrt{a+c}+\sqrt{b+c}\)(đpcm)

Hoặc cách 2 bạn có thể đi ngược lại giả thuyết.Chúc bạn học tốt.

10 tháng 7 2019

Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)

Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)

Bài 2: Thêm đk a,b,c >0.

Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.

Bài 3: Nó sao sao ấy ta?

17 tháng 5 2020

đề sai đúng không mn?