Cho tam giác ABC có AB = AC, I là trung điểm của BC.a) Chứng minh AI vuông góc với BCb) Trên tia đối của tia IA lấy điểm D sao cho IA = ID, chứng minh AB = CDc) Trên một nửa mặt phẳng bờ là đường thẳng BC, không chứa điểm A, kẻ BE vuông góc với BC, BE = AI. O là trung điểm của BI, chứng minh A, O, E thẳng hàng.d) Biết góc BEI bằng 400 tính số đo góc ACB.Cho tam giác ABC có AB = AC, góc A là góc nhọn, H là...
Đọc tiếp
Cho tam giác ABC có AB = AC, I là trung điểm của BC.
a) Chứng minh AI vuông góc với BC
b) Trên tia đối của tia IA lấy điểm D sao cho IA = ID, chứng minh AB = CD
c) Trên một nửa mặt phẳng bờ là đường thẳng BC, không chứa điểm A, kẻ BE vuông góc với BC, BE = AI. O là trung điểm của BI, chứng minh A, O, E thẳng hàng.
d) Biết góc BEI bằng 400 tính số đo góc ACB.
Cho tam giác ABC có AB = AC, góc A là góc nhọn, H là trung điểm của BC.
a) Chứng minh AH là tia phân giác của góc BAC
b) Vẽ HD vuông góc với AC tại D. Trên cạnh AB lấy điểm E sao cho AE = AD. Tính số đo góc AEH.
Gọi M là giao điểm của hai tia AB và DH. Đường thẳng qua M và song song với ED cắt tia AC tại N. Chứng minh N, H, E thẳng hàng.
Cho tam giác ABC có AB = AC, góc A là góc nhọn, H là trung điểm của BC.
a) Chứng minh AH là tia phân giác của góc BAC
b) Vẽ HD vuông góc với AC tại D. Trên cạnh AB lấy điểm E sao cho AE = AD. Tính số đo góc AEH.
Gọi M là giao điểm của hai tia AB và DH. Đường thẳng qua M và song song với ED cắt tia AC tại N. Chứng minh N, H, E thẳng hàng.
a: góc ABC=180-2*53=180-106=74 độ
b: Xét ΔBAN và ΔBCN có
BA=BC
góc ABN=góc CBN
BN chung
=>ΔBAN=ΔBCN
c: Xét ΔBEA vuông tại E và ΔBIC vuông tại I có
BA=BC
góc EBA chung
=>ΔBEA=ΔBIC
d: Xét ΔBAC có BI/BA=BE/BC
nên IE//AC
e: ΔBAC cân tại B có BN là phân giác
nên BN vuông góc AC
Xét ΔBAC có
AE,CI là đường cao
AE cắt CI tại S
=>S là trực tâm
=>B,S,N thẳng hàng