Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a+b+c=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)=0
\(\Leftrightarrow\)\(a^3+ab^2+ac^2-a^2b-a^2c-abc+a^2b+b^3+bc^2-ab^2-\)
\(abc-b^2c+ca^2+bc^2+c^3-abc-ac^2-bc^2\)=0
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3-3abc=-c^3\)
\(a^3+b^3=2\left(c^3-8d^3\right)\)
\(\Leftrightarrow a^3+b^3=2c^3-16d^3\)
\(\Leftrightarrow a^3+b^3+c^3+d^3=3c^3-15d^3\)
Ta có: \(3c^3-15d^3=3\left(c^3-5d^3\right)⋮3\)
\(\Rightarrow a^3+b^3+c^3+d^3⋮3\)(1)
Ta có: \(a^3-a=\left(a-1\right)a\left(a+1\right)⋮3\)
\(b^3-b=\left(b-1\right)b\left(b+1\right)⋮3\)
\(c^3-c=\left(c-1\right)c\left(c+1\right)⋮3\)
\(d^3-d=\left(d-1\right)d\left(d+1\right)⋮3\)
\(\Rightarrow a^3+b^3+c^3+d^3-a-b-c-d⋮3\)(2)
Từ (1) và (2) suy ra \(a+b+c+d⋮3\)
1 sai
(a-b).(a+b)=a^2-b^2
2 đúng
3 đúng
4 sai
(x-3)^2=-(3-x)^2
5 sai
(x-3)^3=-(3-x)^3
Do a chia 3 dư 2 nên a = 3k + 2 (k ∈ ℕ)
⇒ a² - 1 = (3k + 2)² - 1
= (3k)² + 2.3k.2 + 2² - 1
= 9k² + 12k + 3
= 3(3k² + 4k + 1) ⋮ 3
Vậy (a² - 1) ⋮ 3
A=1+3^2+3^4+...+3^100
-> 3^2A=9A=3^2+3^4+3^6+....+3^102
-> 9A-A=3^102-1( chỗ này mik làm tắt vì mỏi tay)
-> 8A=3^102-1
->A=\(\frac{3^{102}-1}{8}\)
A=a(b+3) - b(3+b)
=> A = (a-b)(b+3)
Vs a = 2, b = 3
=> A = -6