K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2016

các bài toán bên dưới đều có thể áp dụng bđt tổng quát sau: 
a²/x + b²/y + c²/z + d²/t ≥ (a+b+c+d)² /(x+y+z+t) (*-*) 
bao nhiêu cặp số cũng đc trong đó có đk x, y, z, t > 0 
dấu "=" khi a/x = b/y = c/z = d/y 
~ ~ ~ ~ 
chứng minh là hệ quả trực tiếp từ bđt Bunhiacopski 
hoặc cách khác: với 2 cặp số: a²/x + b²/y ≥ (a+b)²/(x+y) 
ta chứng minh bằng biến đổi tương đương sẽ bđt đúng là (ay-bx)² ≥ 0 
ad: a²/x + b²/y + c²/z ≥ (a+b)²/(x+y) + c²/z ≥ (a+b+c)²/(x+y+z) 
cứ bổ sung thêm vào ta cm được cho 4, 5... cặp số 
~ ~ ~ ~ 
1) ad (*-*) với 5 cặp số: 
1/a + 1/a + 1/b + 1/c + 1/d ≥ (5)² /(2a+b+c+d) 
=> 25/(2a+b+c+d) ≤ 2/a + 1/b + 1/c + 1/d 
tương tự: 25/(a+2b+c+d) ≤ 2/b + 1/a + 1/c + 1/d 
25/(a+b+2c+d) ≤ 2/c + 1/a + 1/b + 1/d 
25/(a+b+c+2d) ≤ 2/d + 1/a + 1/b + 1/c 
cộng lại 4 bđt trên: 
25.VT ≤ 5(1/a + 1/b + 1/c +1/d) = 25 => VT ≤ 1 (đpcm) ; dấu "=" khi a = b = c = d = 1 
~ ~ ~ ~ 
2) ad bđt (*-*) với 4 cặp số: 
a/(b+c) + b/(c+d) + c/(d+a) + d/(a+b) = 
= a²/(ab+ac) + b²/(bc+bd) + c²/(cd+ca) + d²/(da+db) ≥ 
≥ (a+b+ c+d)²/(ab+ac +bc+bd + cd+ca + da+db) cần cm ≥ 2 
qui đồng, khai triển rút gọ => cần cm a²+b²+c²+d² ≥ 2ca + 2db 
<=> (a-c)² + (b-d)² ≥ 0 là bđt đúng => đpcm 
~ ~ ~ ~ 
3) hình như lại ghi sai đề, thử thay a = 2, b = c = 1 có: 
a/(b+2a) + b/(c+2a) + c/(a+2b) = 2/5 + 1/5 + 1/4 = 17/20 ≥ 1 (???) 
~ ~ ~ ~ 
4) vẫn ad (*-*): dùng luôn cho 8 cặp số (hoặc tách thành vài lần kủng đc) 
1/a + 3(1/b) + 4(1/c) ≥ (1+3+4)² /(a+3b+4c) 
1/b + 3(1/c) + 4(1/a) ≥ (1+3+4)² /(b+3c+4a) 
1/c + 3(1/a) + 4(1/b) ≥ (1+3+4)² /(c+3a+4b) 

cộng lại hết: 
8(1/a + 1/b + 1/c) ≥ 8²/(a+3b+4c) + 8²/(b+3c+4a) + 8²/(c+3a+4b) 
=> 8²/(a+3b+4c) + 8²/(b+3c+4a) + 8²/(c+3a+4b) ≤ 8(bc+ca+ab)/abc = 8 
=> 1/(a+3b+4c) + 1/(b+3c+4a) + 1/(c+3a+4b) ≤ 1/8 (đpcm) 
dấu "=" khi a = b = c = 3 
~ ~ ~ ~ ~ 
5) ad (*-*) 
a/(a+2b+3c) + b/(b+2c+3a) + c/(c+2a+3b) = 
= a²/(a²+2ab+3ac) + b²/(b²+2bc+3ab) + c²/(c²+2ac+3bc) ≥ 
≥ (a+b+c)² /(a²+b²+c² + 5ab + 5ac + 5bc) 

mặt khác có bđt: a²+b²+c² ≥ ab+bc+ca 
=> (a+b+c)² = a²+b²+c² + 2ab+2bc+2ca ≥ 3ab+bc+3ca 
=> 2(a+b+c)² ≥ (a+b+c)² + 3ab+3bc+3ca = a²+b²+c² + 5ab+5bc+5ca 
=> (a+b+c)² /(a²+b²+c² + 5ab + 5ac + 5bc) ≥ 1/2 

thay vào trên ta có VT ≥ 1/2 (đpcm); dấu "=" khi a = b = c 

24 tháng 12 2018

kết quả

                                            

//h.vn/hoi-dap/question/21757.html

24 tháng 12 2018

mk k hiểu

16 tháng 12 2023

d ở đâu ra vậy em?

19 tháng 1 2018

a/ a.(b+c)-b(a-c)=ab+ac-ab+bc=ac+bc=c.(a+b) => dpcm

b/ a.(b-c)-a.(b+d)=ab-ac-ab-ad=-ac-ad=-a(c+d) => dpcm

19 tháng 1 2018

a.

a.(b+c)-b.(a-c) = (a+b).c

Ta xét vế trái :

a.(b+c)-b.(a-c)

=a.b +a.c - b.a +b.c

=(a.b+b.c) -(b.a-a.b)

=(a+b).c - 0

=(a+b).c

Vậy a.(b+c)-b.(a-c)= (a+b).c

b.

a.(b-c)-a.(b+d) = -a.(c+d)

Ta xét vế trái :

a.(b-c)-a.(b+d)

=a.b - a.c - a.b - a.d

=(a.b - a.b) - (a.c - a.d)

= 0 - a.(c+d)

= -a.(c+d)

Vậy a.(b-c)-a.(b+d) = -a.(c+d)

❤Good❤ study !!!❤

18 tháng 7 2021

\(=>A+B-C+D=a+b-5-b-c+1-b+c+4+b-a\)

\(=-5+4=-1\)

18 tháng 7 2021

undefined

17 tháng 7 2021

Ta có: \(\left(\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{9}\right)>\dfrac{1}{9}.6=\dfrac{6}{9}>\dfrac{1}{2}\)  (1)

\(\left(\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{19}\right)>\dfrac{1}{19}.10=\dfrac{10}{19}>\dfrac{1}{2}\)  (2)

\(\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{19}>\left(1\right)+\left(2\right)\)

\(\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{19}>1\left(đpcm\right)\)

 

 

17 tháng 7 2021

gừ ... gừ sợ chưa

 

31 tháng 3 2022

gfvfvfvfvfvfvfv555

13 tháng 1 2016

ta co : -(a-b-c)+(-a+b-c)-(-a+b+c)=-a+b+c+(-a)+b+(-c)+a-b-c

                                                          =(-a+a)+(b-b)+(c-c)-a+b+(-c)

                                                         =-a+b+(-c)

                                                          =-(a-b+c)

\(\Rightarrow dpcm\)

13 tháng 1 2016

Quá dễ. Phá ngoặc ở VT ra, biến đổi về VP