K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2016

xét hiệu:

\(\left(a^{2000}+b^{2000}\right)\left(a^{2002}+b^{2002}\right)-\left(a^{2001}+a^{2001}\right)^2=0\)

11 tháng 3 2016

(a^2001 + b^2001).(a+ b) - (a2000 + b2000).ab = a^2002 + b^2002

(a+ b) – ab = 1

(a – 1).(b – 1) = 0

a = 1 hoặc b = 1

Với a = 1 suy ra; b^2000 = b^2001 suy ra; b = 1 hoặc b = 0 (loại)

Với b = 1suy ra; a2000 = a2001 suy ra; a = 1 hoặc a = 0 (loại)

Vậy a = 1; b = 1 suy ra a2011 + b2011 = 2

24 tháng 2 2020

Đặt \(A=1-x+x^2-x^3+...-x^{1999}+x^{2000}\)

\(B=1+x+x^2+x^3+...+x^{1999}+x^{2000}\)

Ta có : \(\left(x^2-1\right).P\left(x\right)=\left(x+1\right)A\left(x-1\right)B\)

\(=\left(x^{2001}+1\right)\left(x^{2001}-1\right)\)

\(=\left(x^{2001}\right)^2-1=\left(x^2\right)^{2001}-1^{2001}\)

\(=\left(x^2-1\right)\left(x^{4000}+x^{3998}+x^{3996}+...+x^2+1\right)\)

\(\Rightarrow P\left(x\right)=x^{4000}+x^{3998}+...+x^2+1\)

Theo đề bài ta có : \(P\left(x\right)=a_o+a_1x+...+a_{4000}x^{4000}\)

Do đó : hệ số chẵn sẽ = 1, hệ số lẻ = 0

\(\Rightarrow a_{2001}=0\)

Chúc bạn học tốt !!

`a, (x-y)^2 = (x+y)^2 - 4xy = 12^2 - 35 . 4 = 144 - 140 = 4`.

`b, (x+y)^2 = (x-y)^2 + 4xy = 8^2 + 20.4 = 64 + 80 = 144`

`c, x^3 + y^3 = (x+y)^3 - 3xy(x+y) = 5^3 - 3 . 6 . 5 = 125 - 90 = 35`

`d, x^3 - y^3 = (x-y)^3 - 3xy(x-y) = 3^3 - 3 .40 . 3 = 27 - 360 = -333`.

Bài 14:

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{\widehat{A}}{1}=\dfrac{\widehat{B}}{3}=\dfrac{\widehat{E}}{4}=\dfrac{\widehat{F}}{7}=\dfrac{360^0}{15}=24^0\)

Do đó: \(\widehat{A}=24^0;\widehat{B}=72^0;\widehat{C}=96^0;\widehat{F}=168^0\)

 

23 tháng 9 2021

\(a,x+y=1\Leftrightarrow\left(x+y\right)^3=1\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\\ \Leftrightarrow x^3+y^3+3xy\cdot1=1\Leftrightarrow x^3+y^3+3xy=1\)

\(b,x^3-y^3-3xy\\ =x^3-3x^2y+3xy^2-y^3-3xy+3x^2y-3xy^2\\ =\left(x-y\right)^3-3xy\left(x-y-1\right)\\ =1^3-3xy\left(1-1\right)=1-0=1\)

\(c,x^3+y^3+3xy\left(x^2+y^2\right)+6x^2y^2\left(x+y\right)\\ =\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left[\left(x+y\right)^2-2xy\right]+6x^2y^2\\ =x^2-xy+y^2+3xy-6x^2y^2+6x^2y^2\\ =x^2+2xy+y^2=\left(x+y\right)^2=1\)

23 tháng 11 2023

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=3^2+4^2=25\)

=>BC=5(cm)

b: Xét ΔABC có MN//BC

nên \(\dfrac{AM}{AB}=\dfrac{MN}{BC}\)

=>\(\dfrac{MN}{5}=\dfrac{1.2}{3}=\dfrac{2}{5}\)

=>MN=2(cm)

c: Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

=>\(\dfrac{BD}{3}=\dfrac{CD}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{BC}{7}=\dfrac{5}{7}\)

=>\(\dfrac{BD}{3}=\dfrac{5}{7};\dfrac{CD}{4}=\dfrac{5}{7}\)

\(\dfrac{BD}{3}=\dfrac{5}{7}\)

=>\(BD=\dfrac{5}{7}\cdot3=\dfrac{15}{7}\left(cm\right)\)

d: \(\dfrac{CD}{4}=\dfrac{5}{7}\)

=>\(CD=\dfrac{5}{7}\cdot4=\dfrac{20}{7}\left(cm\right)\)

Bài 2: 

a: Xét ΔABC có MN//BC

nên AM/AB=MN/BC

=>AM/(AM+8)=2/3

=>3AM=2AM+16

=>AM=16(cm)

b: Xét ΔABC có MN//BC

nên AM/MB=AN/NC

=>10/NC=2

hay NC=5(cm)

25 tháng 2 2022

Bài 2.

a.ta có: MN//BC ( gt )

\(\Rightarrow\dfrac{MN}{BC}=\dfrac{AM}{AM+8}\) ( hệ quả Ta-lét )

\(\Leftrightarrow\dfrac{12}{18}=\dfrac{AM}{AM+8}\)

\(\Leftrightarrow2\left(AM+8\right)=3AM\)

\(\Leftrightarrow2AM+16=3AM\)

\(\Leftrightarrow AM=16\)

b.ta có: \(\dfrac{AM}{MB}=\dfrac{AN}{NC}\) ( định lí Ta-lét )

\(\Leftrightarrow\dfrac{16}{8}=\dfrac{10}{NC}\)

\(\Leftrightarrow16NC=80\)

\(\Leftrightarrow NC=5\)

 

 

21 tháng 6 2021

a) P = \(x^2+3x+y^2-3y-2xy+90\)

\(\left(x-y\right)^2+3\left(x-y\right)+90\)

\(5^2+3.5+90=130\)

b) P = \(4x^2+9y^2-12xy-12x+24xy-18y+118\)

\(4x^2+9y^2+12xy-12x-18y+118\)

\(\left(2x+3y\right)^2-6\left(2x+3y\right)+118\)

\(\left(-7\right)^2-6.\left(-7\right)+118=209\)

21 tháng 6 2021

Các bạn ơi cho tui hỏi câu này : noise in / kept / night / the / awake / city / at / the / him / .

Giúp mình với , cảm ơn.

 

HQ
Hà Quang Minh
Giáo viên
11 tháng 9 2023

Với \(x = 4\) ta được. \(y = 2.4 + 3 = 11\)

Với \(x = 6\) ta được. \(y = 2.6 + 3 = 15\)

\(x\)

1

2

3

4

6

\(y = 2x + 3\)

5

7

9

11

15