![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=2+2^2+2^3+...+2^{199}+2^{200}\)
\(A=\left(2+2^2+2^3\right)+...+\left(2^{198}+2^{199}+2^{200}\right)\)
\(A=2\left(1+2+2^2\right)+...+2^{198}\left(1+2+2^2\right)\)
\(A=2.7+...+2^{198}.7\)
\(A=7\left(2+...+2^{198}\right)\)chia hết cho 7
\(\Rightarrow A\)chia hết cho 7
![](https://rs.olm.vn/images/avt/0.png?1311)
a)7A = 72+73+.........+7199+7200
suy ra 7A - A = 7200-7
6A = 7200-7
nên \(A=\frac{7^{200}-7}{6}\)
b) 6A = 7200-7
suy ra 6A + 7 = 7200 = 7x+2
=> x + 2 = 200
=> x = 200 - 2
=> x = 198
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có : A = 7 + 72 + 73 + 74 + 75 + 76 + ... + 7118 + 7119 + 7120
= (7 + 72 + 73) + (74 + 75 + 76) + ... + (7118 + 7119 + 7120)
= 7(1 + 7 + 72) + 74(1 + 7 + 72) + ... + 7118(1 + 7 + 72)
= (1 + 7 + 72)(7 + 74 + ... + 7118)
= 57(7 + 74 + ... + 7118) \(⋮\)57(ĐPCM)
TL:
A = (7+71+72)+...+(7118+7119+7120)
A = 7.(1+7+49)+....+7118.(1+7+49)
A = (7+7118).57
mà 57\(⋮\)57 => A \(⋮\)57
![](https://rs.olm.vn/images/avt/0.png?1311)
3)7+7^2+7^3+...+7^100
=>7C-C=7^101-7
=>C=\(\frac{7^{101}-7}{6}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b: =>3|x-5|=8+4=12
=>|x-5|=4
=>x-5=4 hoặc x-5=-4
=>x=9 hoặc x=1
d: =>2x+6=3-3x-2
=>2x+6=1-3x
=>5x=-5
hay x=-1
e: \(\Leftrightarrow x-3\inƯC\left(70;98\right)\)
\(\Leftrightarrow x-3\in\left\{1;2;7;14\right\}\)
mà x>8
nên \(x\in\left\{10;17\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
A=1+7+72+73+...+719
= (1+7+72+73)+(74+75+76+77)+...+(7196+7197+7198+7199)
= (1+7+49+343)+74.(1+7+72+73)+...+7196.(1+7+72+73)
= 400+74.400+...+7196.400
= 400.(1+74+...+7196) chia hết cho 400
=> A chia hết cho 400 (đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A⋮5\)vì
\(A=\left(7+7^3\right)+\left(7^2+7^4\right)+\left(7^5+7^7\right)+\left(7^6+7^8\right)\)
\(A=7.\left(1+7^2\right)+7^2.\left(1+7^2\right)+7^5.\left(1+7^2\right)+7^6.\left(1+7^2\right)\)
\(A=7.50+7^2.50+7^5.50+7^6.50\)
\(A=50.\left(7+7^2+7^5+7^6\right)\)
Vì A có số tận cùng là 0 nên \(A⋮5\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=7+7^2+7^3+...+7^{120}\)
\(A=\left(7+7^2+7^3\right)+...+\left(7^{118}+7^{119}+7^{120}\right)\)
\(A=7\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)
\(A=7.57+7^4.57+...+7^{118}.57\)
\(A=57\left(7+7^4+...+7^{118}\right)\)
\(\Rightarrow A⋮57\)