K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
1 tháng 3 2019

a/ \(\overrightarrow{AB}=\left(-5;4\right)\Rightarrow\) đường thẳng AB có 1 vtpt là \(\overrightarrow{n_{AB}}=\left(4;5\right)\)

\(\Rightarrow\) phương trình đường thẳng AB có dạng:

\(4\left(x-7\right)+5\left(y+1\right)=0\Leftrightarrow4x+5y-23=0\)

b/ \(\overrightarrow{BC}=\left(0;-7\right)\)

Do \(AH\perp BC\) nên đường thẳng AH nhận \(\overrightarrow{BC}\) là một vtpt, chọn \(\overrightarrow{n_{AH}}=\left(0;1\right)\)

Phương trình đường cao AH có dạng:

\(0\left(x-7\right)+1\left(y+1\right)=0\Leftrightarrow y+1=0\)

Gọi M là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}x_M=\dfrac{x_A+x_B}{2}=\dfrac{9}{2}\\y_M=\dfrac{y_A+y_B}{2}=1\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{9}{2};1\right)\)

\(\Rightarrow\overrightarrow{CM}=\left(\dfrac{5}{2};-5\right)\) \(\Rightarrow\) chọn \(\overrightarrow{n_{CM}}=\left(2;1\right)\) là 1 vtpt của đường thẳng CM

Phương trình trung tuyến AM:

\(2\left(x-2\right)+1\left(y+4\right)=0\Leftrightarrow2x+y=0\)

c/ \(\overrightarrow{n_{\Delta}}=\left(3;-1\right)\)

Gọi \(d\) là đường thẳng đi qua A và vuông góc \(\Delta\Rightarrow\overrightarrow{n_d}.\overrightarrow{n_{\Delta}}=0\)

\(\Rightarrow\) chọn \(\overrightarrow{n_d}=\left(1;3\right)\) là 1 vtpt của \(d\)

Phương trình đường thẳng d:

\(1\left(x-7\right)+3\left(y+1\right)=0\Leftrightarrow x+3y-4=0\)

Hình chiếu vuông góc \(A'\) của A lên \(\Delta\) chính là giao điểm của d và \(\Delta\)

\(\Rightarrow\) tọa độ \(A'\) là nghiệm của hệ:

\(\left\{{}\begin{matrix}x+3y-4=0\\3x-y-12=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\) \(\Rightarrow A'\left(4;0\right)\)

d/ \(\Delta'\perp\Delta\Rightarrow\overrightarrow{n_{\Delta'}}.\overrightarrow{n_{\Delta}}=0\Rightarrow\) chọn \(\overrightarrow{n_{\Delta'}}=\left(1;3\right)\) là 1 vtpt của \(\Delta'\)

\(\Rightarrow\) phương trình \(\Delta'\) có dạng: \(x+3y+c=0\)

\(d\left(A;\Delta'\right)=\dfrac{\left|x_A+3y_A+c\right|}{\sqrt{1^2+3^2}}=\sqrt{10}\)

\(\Leftrightarrow\left|7-3+c\right|=10\Leftrightarrow\left|c+4\right|=10\)

\(\Rightarrow\left[{}\begin{matrix}c+4=10\\c+4=-10\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}c=6\\c=-14\end{matrix}\right.\)

Vậy có 2 đường thẳng \(\Delta'\) thỏa mãn: \(\left[{}\begin{matrix}x+3y+6=0\\x+3y-14=0\end{matrix}\right.\)

6 tháng 3 2019

absbsfasđấ

a: vecto AB=(6;-4)

PTTS là:

x=-6+6t và y=3-4t

b: Vì (d) vuông góc AB nên (d) có VTPT là (3;-2)

Phương trình(d) là:

3(x-3)+(-2)(y-2)=0

=>3x-9-2y+4=0

=>3x-2y-5=0

NV
14 tháng 4 2022

a.

\(\overrightarrow{AB}=\left(1;2\right)\Rightarrow\) đường thẳng AB nhận (2;-1) là 1 vtpt

Phương trình AB:

\(2\left(x-1\right)-1\left(y+3\right)=0\Leftrightarrow2x-y-5=0\)

b.

d vuông góc \(\Delta\Rightarrow d\) nhận (4;-3) là 1 vtpt

Phương trình d có dạng: \(4x-3y+c=0\)

\(d\left(B;d\right)=\dfrac{\left|4.2-3.\left(-1\right)+c\right|}{\sqrt{4^2+\left(-3\right)^2}}=\dfrac{2}{5}\)

\(\Leftrightarrow\left|c+11\right|=2\Rightarrow\left[{}\begin{matrix}c=-9\\c=-13\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}4x-3y-13=0\\4x-3y-9=0\end{matrix}\right.\)

10 tháng 4 2018

a) x2 + y2 – 4x + 8y – 5 = 0

⇔ (x2 – 4x + 4) + (y2 + 8y + 16) = 25

⇔ (x – 2)2 + (y + 4)2 = 25.

Vậy (C) có tâm I(2 ; –4), bán kính R = 5.

b) Thay tọa độ điểm A vào phương trình đường tròn ta thấy:

(–1 – 2)2 + (0 + 4)2 = 32 + 4= 52= R2

⇒ A thuộc đường tròn (C)

⇒ tiếp tuyến (d’) cần tìm tiếp xúc với (C) tại A

⇒ (d’) là đường thẳng đi qua A và vuông góc với IA

⇒ (d’) nhận Giải bài 6 trang 84 SGK hình học 10 | Giải toán lớp 10 là một vtpt và đi qua A(–1; 0)

⇒ phương trình (d’): 3(x + 1) – 4(y - 0)= 0 hay 3x – 4y + 3 = 0.

c) Gọi tiếp tuyến vuông góc với (d) : 3x – 4y + 5 = 0 cần tìm là (Δ).

(d) có Giải bài 6 trang 84 SGK hình học 10 | Giải toán lớp 10 là một vtpt; 1 VTCP là ud(4; 3)

(Δ) ⊥ (d) ⇒ (Δ) nhận Giải bài 6 trang 84 SGK hình học 10 | Giải toán lớp 10 là một vtpt

⇒ (Δ): 4x + 3y + c = 0.

(C) tiếp xúc với (Δ) ⇒ d(I; Δ) = R

Giải bài 6 trang 84 SGK hình học 10 | Giải toán lớp 10

Vậy (Δ) : 4x + 3y + 29 = 0 hoặc 4x + 3y – 21 = 0.

NV
24 tháng 3 2023

a.

Do d vuông góc với \(\Delta\) nên d nhận \(\left(1;-3\right)\) là 1 vtpt

Phương trình d:

\(1\left(x+1\right)-3\left(y-1\right)=0\Leftrightarrow x-3y+4=0\)

b.

\(M\in d\) mà \(MH\perp\Delta\Rightarrow\) H là giao điểm của d và \(\Delta\)

Tọa độ H là nghiệm của hệ:

\(\left\{{}\begin{matrix}x-3y+4=0\\3x+y-8=0\end{matrix}\right.\) \(\Rightarrow H\left(2;2\right)\)

c.

M' đối xứng với M qua \(\Delta\) khi và chỉ khi H là trung điểm MM'

Theo công thức trung điểm:

\(\left\{{}\begin{matrix}x_{M'}=2x_H-x_M=5\\y_{M'}=2y_H-y_M=3\end{matrix}\right.\) \(\Rightarrow M'\left(5;3\right)\)

26 tháng 3 2023

Tại sao lại đổi từ (3; 1) sang (1; -3 ) vậy ạ? Denlta có dạng pttq thì có vtpt và đường thẳng d cũng vuông góc với denlta rồi mà?

a: vecto AB=(7;1)

=>(d) có VTPT là (7;1)

Phương trình (d) là;

7(x-6)+1(y+2)=0

=>7x+y-40=0

b: Tọa độ K là:

x=(6-2)/2=2 và y=(4-2)/2=1

B(5;5); K(2;1)

vecto BK=(-3;-4)=(3;4)

=>VTPT là (-4;3)

Phương trình BK là:

-4(x-2)+3(y-1)=0

=>-4x+8+3y-3=0

=>-4x+3y+5=0

c: \(AC=\sqrt{\left(6+2\right)^2+\left(-2-4\right)^2}=10\)

Phương trình (C) là:

(x-5)^2+(y-5)^2=10^2=100

a: (Δ)//d nên Δ: -x+2y+c=0

=>VTPT là (-1;2)

=>VTCP là (2;1)

PTTS là:
x=3+2t và y=1+t

b: (d): -x+2y+1=0

=>Δ: 2x+y+c=0

Thay x=4 và y=-2 vào Δ, ta được:

c+8-2=0

=>c=-6