K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 12 2014

Ta có : a+5b chia hết cho 7

=>10(a+5b) chia hết cho 7

=>10a+50b chia hết cho 7

=>10a+b+49b chia hết cho 7

=>(10a+b+49b)-49b chia hết cho 7(vì số chia hết cho 7-một số chia hết cho 7=1 số chia hết cho 7)

=>10a+b chia hết cho 7

31 tháng 12 2014

ta có : a+5b chia hết cho 7

=>10(a+5b) chia hết cho 7

=>10a+50b chia hết cho 7

=>10a+b+49b chia hết cho 7

=>(10a+b+49b)-49b chia hết cho 7(vì số chia hết cho 7-một số chia hết cho 7=1 số chia hết cho 7)

=>10a+b chia hết cho 7

20 tháng 8 2015

Ta có: a+5b chia hết cho 7

=> 10(a+5b) chia hết cho 7

Ta có: 10(a+5b)-(10a+b)

=10a+50b-10a-b

=49b

mà 49b chia hết cho 7

=> 10a+b chia hết cho 7

mệnh đề đảo lại vẫn đúng

12 tháng 7 2015

đặt A=5(10a+b)-(a+5b)

=50a+5b-a-5b

=49a

do 49 chia hết cho 7

=>A chia hết cho 7 nên:

nếu a+5b chia hết cho 7=>5(10a+b) chia hết cho 7 , (5,7)=1=>10a+b chia hết cho 7(1)

nếu 10+b chia hết cho 7=>5(10a+b) chia hết cho 7=>a+5b chia hết cho 7(2)

từ 1 và 2=> nếu a+5b chia hết cho 7 thì 10a+b chia hết cho 7, mệnh đề này đảo lại cũng đúng

12 tháng 7 2015

Nghĩa là 10a + b chia hết cho 7  CMR a +5b chia hết cho 7 phải không?

22 tháng 11 2021

sssssssssssss

5 tháng 1 2017

1 giải

Ta có 17 chia hết cho 17

suy ra 17a+3a+b chia hết cho 17

suy ra 20a+2b chia hết cho 17

rút gọn cho 2

suy ra 10a+b chia hét cho 17 

2 giải

* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17

vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *

nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17

vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)

Từ (1) và (2) suy ra điều phải chứng minh

3 bó tay

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

21 tháng 11 2015

Ta có: a+5b chia hết cho 7

=>10.﴾a+5b﴿ chia hết cho 7

=>10a+50b chia hết cho 7

Nếu 10a+b chia hết cho 7 thì 10a+50b‐﴾10a+b﴿ bchia hết cho 7

=>49b chia hết cho 7 ﴾đúng﴿

Vì vậy 10a+b chia hết cho 7

CM điều ngược lại đúng

Ta có: 10a+b chia hết cho 7

=>5.﴾10a+b﴿ chia hết cho 7 

=>50a+5b chia hết cho 7

Nếu a+5b chia hết cho 7 thì ﴾50a+5b﴿‐﴾a+5b﴿ chia hết cho 7

=>49a chia hết cho 7 ﴾đúng﴿

Vậy điều ngược lại đúng 

14 tháng 2 2016

Xét phép trừ:

10(a + 5b) - (10a + b)

= 10a + 50b - 10a - b

= 49b chia hết cho 7 (1)

+ Nếu a + 5b chia hết cho 7 => 10(a + 5b) chia hết cho 7  (2)

Từ (1) và (2) => 10a + b chia hết cho 7

+ Nếu 10a + b chia hết cho 7   (3)

Từ (1) và (3) => 10(a + 5b) chia hết cho 7 => a + 5b chia hết cho 7 (Vì (7; 10) = 1)

Vậy a + 5b chia hết cho 7 khi và chỉ khi 10a + b chia hết cho 7