Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 5 + 52 + 53 + 54 + ... + 5200
5A = 52 + 53 + 54 + 55 + ... + 5201
5A - A = (52 + 53 + 54 + 55 + ... + 5201) - (5 + 52 + 53 + 54 + ... + 5200)
4A = 5201 - 5 < 5201
=> A < 5201
\(2A=\frac{5}{2}+\frac{5}{2^2}+\frac{5}{2^3}+...+\frac{5}{2^{99}}\left(1\right)\)
\(A=\frac{5}{2^2}+\frac{5}{2^3}+\frac{5}{2^4}+...+\frac{5}{2^{100}}\left(2\right)\)
Trừ từng vế của (1) cho (2), ta có được
\(A=\frac{5}{2}-\frac{5}{2^{100}}=\frac{5\cdot\left(2^{99}-1\right)}{2^{100}}>\frac{5\cdot2^{98}}{2^{100}}=\frac{5}{4}>\frac{2}{3}\)
Ta có \(k^2>k^2-1=\left(k+1\right)\left(k-1\right)\)
Áp dung vào bài toán ta được
\(A=\frac{1}{2}.\frac{3}{4}...\frac{199}{200}=\frac{1.3...199}{2.4...200}\)
\(\Rightarrow A^2=\frac{1^2.3^2...199^2}{2^2.4^2...200^2}< \frac{1^2.3^2...199^2}{1.3.3.5...199.201}=\frac{1^2.3^2...199^2}{1.3^2.5^2...199^2.201}=\frac{1}{201}\)
Vậy \(A^2< \frac{1}{201}\)
Ta có :
\(A=\frac{10^5+4}{10^5-1}=\frac{10^5-1+5}{10^5-1}=\frac{10^5-1}{10^5-1}+\frac{5}{10^5-1}=1+\frac{5}{10^5-1}\)
\(B=\frac{10^5+3}{10^5-2}=\frac{10^5-2+5}{10^5-2}=\frac{10^5-2}{10^5-2}+\frac{5}{10^5-2}=1+\frac{5}{10^5-2}\)
Do \(1+\frac{5}{10^5-1}>1+\frac{5}{10^5-2}\)
\(\Rightarrow A>B\)
cũng hơi dễ!!
c1 :ở tử và mẫu của A và B đều là 105 (= nhau)
ở tử của A và B đều là phép +
ở mẫu của A và B đều là phép -
Suy ra: của A= 4+1=5
của B= 3+2=5
Vậy: A và B bằng nhau (A=B)
c2: tính bằng máy tính: A=1,000050001
B=1,000050001
Vậy A=B
đúng thì k cho mik nha!!!
Ta có: 1/3^2 < 1/2.4
1/5^2 < 1/4.6
1/7^2 < 1/6.8
.....
1/201^2 < 1/ 200.202
=>1/3^2 + 1/5^2 + 1/7^2 +... + 1/201^2 < 1/2.4 + 1/4.6 + 1/6.8 +...+ 1/200.202 = A
=> A = 1/2.4 + 1/4.6 + 1/6.8 + ... + 1/200.202
= 1/2.( 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 +... + 1/200 - 1/202)
= 1/2.( 1/2 - 1/202)
= 1/4 - 1/404
Vì 1/404 > 0 nên: 1/4 - 1/404 < 1/4
=> A < 1/4
Mà B < A
=> B < 1/4
Vậy B < 1/4.
a) ta có \(\frac{5}{24};\frac{15}{24};\frac{5}{8}\)
=>\(\frac{5}{24}< \frac{15}{24}< \frac{20}{24}\)quy đồng lên
b)\(\frac{4}{9};\frac{6+9}{6\cdot9};\frac{2}{3}\)
=>\(\frac{4}{9};\frac{15}{54};\frac{2}{3}\)
=>\(\frac{24}{54};\frac{15}{54};\frac{36}{54}\)
=>\(\frac{15}{54}< \frac{24}{54}< \frac{36}{54}\)
\(P=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+\frac{4}{5^5}+...+\frac{11}{5^{12}}\)
\(\Rightarrow\)\(5P=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+\frac{4}{5^4}+...+\frac{11}{5^{11}}\)
\(\Rightarrow\)\(4P=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+\frac{1}{5^4}+...+\frac{1}{5^{11}}-\frac{1}{5^{12}}\)
\(\Rightarrow\)\(20P=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{10}}-\frac{1}{5^{11}}\)
\(\Rightarrow\)\(16P=1-\frac{1}{5^{11}}+\frac{1}{5^{12}}-\frac{1}{5^{11}}\)\(< 1\)
\(\Rightarrow\)\(P< \frac{1}{16}\)
P/s: nguyên tác: https://olm.vn/thanhvien/nhatphuonghocgiot
A>5201
Vì khi tính một vài số của A thì đã lớn hơn 5201
Ta có:
\(A=5+5^2+5^3+5^4+...+5^{200}\)
\(5A=5.\left(5+5^2+5^3+...+5^{200}\right)\)
\(5A=5^2+5^3+5^4+...+5^{201}\)
\(5A-A=\left(5^2+5^3+5^4+...+5^{200}+5^{201}\right)-\left(5+5^2+5^3+5^4+...+5^{200}\right)\)
\(4A=5^2+5^3+5^4+...+5^{200}+5^{201}-5-5^2-5^3-5^4-...-5^{200}\)
\(4A=\left(5^2-5^2\right)+\left(5^3-5^3\right)+\left(5^4-5^4\right)+...+\left(5^{200}-5^{200}\right)+5^{201}-5\)
\(4A=0+0+0+...+0+5^{201}-5\)
\(4A=5^{201}-5\)
\(A=\frac{5^{201}-5}{4}\)
Vì \(5^{201}-5< 5^{201}\)
\(\Rightarrow\frac{5^{201}-5}{4}< \frac{5^{201}}{4}< 5^{201}\)
hay \(A< 5^{201}\)
Vậy \(A< 5^{201}\)