Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D = 1 + 5 + 52 + 53 + 54 +...+ 519 + 520 - 1
D = (1 + 5 + 52) + (53 + 54 + 55) +...+ (518 + 519 + 520) - 1
D = (1 + 5 + 52) + 53 (1 + 5 + 52) +...+ 518 (1 + 5 + 52) - 1
D = (1 + 5 + 52) (1 + 53 +...+ 518) - 1
D = 31 (1 + 53 +...+ 518) - 1
D = 31 (1 + 53 +...+ 518) - 31 + 30
Vì 31 (1 + 53 +...+ 518) - 31 chia hết cho 31
Nên 31 (1 + 53 +...+ 518) - 31 + 30 chia cho 31 dư 30
Vậy D chia 31 dư 30
D =5+5^2+5^3+......+5^19+5^20
→ Tổng D có số các số hạng là : (20-1)/1+1 =20
→ Ta chia tổng D thành 6 nhóm mỗi nhóm gồm 3 số và thừa ra ngoài 2 số
→ D = (5+5^2) + (5^3+5^4+5^5) + (5^6+5^7+5^8) + ........ + (5^18+5^19+5^20)
= (5+25) + 5^3.(1+5+5^2) + 5^6.(1+5+5^2) + ......... + 5^18.(1+5+5^2)
= 30 + (5^3+5^6+.......+5^18).(1+5+25)
= 30 + (5^3+5^6+.......+5^18).31
Ta thấy : 31 chia hết cho 31 nên (5^3+...+5^18).31 chia hết cho 31
30 chia cho 31 dư 30
→ D chia cho 31 dư 30
Vậy D chia cho 31 dư 30
\(A=5+5^2+5^3+5^4+5^5+5^6+5^7+5^8+5^9\)
\(=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+\left(5^7+5^8+5^9\right)\)
\(=5\left(1+5+5^2\right)+5^4\left(1+5+5^2\right)+5^7\left(1+5+5^2\right)\)
\(=5.31+5^4.31+5^7.31=31.\left(5+5^4+5^7\right)\)chia hết cho 31
Vậy A chia 31 dư 0
\(S=1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+8}\)
\(=1+\frac{1}{\left(1+2\right).3.\frac{1}{2}}+\frac{1}{\left(1+3\right).3.\frac{1}{2}}+...+\frac{1}{\left(1+8\right).8.\frac{1}{2}}\)
\(=1+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{8.9}\)
\(=1+2.\left(\frac{3-2}{2+3}+\frac{4-3}{3.4}+...+\frac{9-8}{8.9}\right)\)
\(=1+2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{9}\right)\)
\(=1+2.\frac{7}{18}=1+\frac{7}{9}=\frac{16}{9}\)
a, \(B=\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+90}{19^{32}+5+90}=\frac{19^{31}+95}{19^{32}+95}=\frac{19\left(19^{30}+5\right)}{19\left(19^{31}+5\right)}=\frac{19^{30}+5}{19^{31}+5}=A\)
b, Ta có: \(\frac{1}{A}=\frac{2^{20}-3}{2^{18}-3}=\frac{2^2.\left(2^{18}-3\right)+9}{2^{18}-3}=4+\frac{9}{2^{18}-3}\)
\(\frac{1}{B}=\frac{2^{22}-3}{2^{20}-3}=\frac{2^2\left(2^{20}-3\right)+9}{2^{20}-3}=4+\frac{9}{2^{20}-3}\)
Vì \(\frac{9}{2^{18}-3}>\frac{9}{2^{20}-3}\)\(\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)
c, Câu hỏi của truong nguyen kim
Câu a )
S = 5 + 52 +..... + 52012
=> S \(⋮5\)
S = 5 + 52 +..... + 52012
S = ( 5 + 53 ) + ( 52 + 54 ) + ........ + ( 52010 + 52012 )
S = 5 ( 1 + 52 ) + 52 ( 1 + 52 ) + ......... + 52010 ( 1 + 52 )
S = 5 x 26 + 52 x 26 + ................ + 52010 x 26
S = 26 ( 5 + 52 + .... + 52010 )
=> S\(⋮26\)
=>\(S⋮13\)( do 26 = 13 x 2 )
Do ( 5 , 13 ) = 1
=> \(S⋮5x13\)
=> \(S⋮65\)
Ta có :
A=5 + 5^2 + 5^3 + 5^4 + ....... + 5^19 + 5^20
=> Tổng A có số hạng tử là: (20 -1)/1 + 1 = 20
=> Ta có thể chia tổng A thành 6 nhóm 3 số và thừa ra ngoài 2 số
A = (5 + 5^2) + (5^3 + 5^4 + 5^5) + .......... + (5^18 + 5^19 + 5^20)
=> A = ( 5 + 25) + 5^3*(1 + 5 + 5^2) + ...... + 5^18*(1 + 5 + 5^2)
=> A = 30 + (1 + 5 + 5^2)*(5^3 + .... + 5^18)
=>A = 30 + 31*(5^3 + ....... + 5^18)
Vì 31 chia hết cho 31 nên 31*(5^3 + ..... +5^18) cùng chia hết cho 31
mà 30 chia cho 31 dư 30
=> Tổng A chia cho 31 dư 30
Vậy A chia cho 31 dư 30
\(A=5+5^2+5^3\left(1+5+5^2\right)+5^6\left(1+5+5^2\right)+...+5^{18}\left(1+5+5^2\right)\)
\(A=5+25+\left(1+5+5^2\right)\left(5^3+5^6+...+5^{18}\right)\)
\(A=30+31\left(5^3+5^6+...+5^{18}\right)\)
Ta thấy \(31\left(5^3+5^6+...+5^{18}\right)⋮31\) dư 0
\(A=30+31\left(5^3+5^6+...+5^{18}\right)\div31\) dư 30