Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 52A=552-550+548-546+....+54-52
52A+A=(552-550+.....+54-52)+(550-548+...+52-1)
26A=552+1
A= 552+1:26
Phần c làm thế nào dzậy mọi ngừi ?????????????????????????
a) \(A=5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\)
\(5^2\cdot A=5^2\cdot\left(5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\right)\)
\(\Rightarrow25A=5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\)
\(\Rightarrow25A+A=\left(5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\right)\)
\(+\left(5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\right)\)
\(\Rightarrow26A=5^{52}-1\)
\(\Rightarrow A=\frac{5^{52}-1}{26}\)
b) Ta có: \(26\cdot A+1=5^n\)
\(\Rightarrow26\cdot\frac{5^{52}-1}{26}+1=5^n\)
\(\Rightarrow5^{52}-1+1=5^n\)
\(\Rightarrow5^{52}=5^n\Rightarrow n=52\)
c)
Tận cùng của tất cả các số ngoại trừ 1 có tận cùng là 25
-> (25-25)+(25-25)+(25-25)+...+(25-25)+(25-1)=24
-> A có tận cùng là 24->A:100 dư 24
. h mk nhé
a) A = 550 - 548 + 546 - 544 +..+ 56 - 54 + 52 - 1
=> 52.A = 52 . (550 - 548 + 546 - 544 +...+ 56 - 54 + 52 - 1)
=> 25A = 552 - 550 + 548 - 546 +...+ 58 - 56 + 54 - 52
=> 25A + A = (552 - 550 + 548 - 546 +...+ 58 - 56 + 54 - 52) + (550 - 548 + 546 - 544 +...+ 56 - 54 + 52 -1)
=> 26A = 552 - 1 \(\Rightarrow A=\frac{5^{52}-1}{26}\)
b) Ta có: 26 . A + 1 = 5n
\(\Rightarrow26\cdot\frac{5^{52}-1}{26}+1=5^n\)
\(\Rightarrow5^{52}-1+1=5^n\)
\(\Rightarrow5^{52}=5^n\) => n = 52
c)
a)
\(A=5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\)
\(5^2.A=5^2.\left(5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\right)\)
\(25A=5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\)
\(A+25A=\left(5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\right)+\left(5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\right)\)
\(26A=5^{22}-1\)
\(A=\dfrac{5^{22}-1}{26}\).
b)
\(26A+1=5^n\)
\(\Leftrightarrow\left(5^{52}-1\right)+1=5^n\)
\(\Leftrightarrow5^{52}=5^n\)
\(\Rightarrow n=52\).
c)
\(A=\left(5^{50}-5^{48}\right)+\left(5^{46}-5^{44}\right)+...+\left(5^6-5^4\right)+\left(5^2-1\right)\)
\(=5^{48}.\left(5^2-1\right)+5^{44}.\left(5^2-1\right)+...+5^4.\left(5^2-1\right)+1.\left(5^2-1\right)\)
\(=5^2.24.\left(5^{46}+5^{42}+...+5^2\right)+24\)
\(=25.4.6.\left(5^{46}+5^{42}+...+5^2\right)+24\)
\(=100.6.\left(5^{46}+5^{42}+...+5^2\right)+24⋮100\)
\(\Rightarrow A⋮100\).
c) Câu hỏi của Yumani Jeng - Toán lớp 6 - Học toán với OnlineMath