Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta xét:
\(\frac{1}{2}< \frac{2}{3}\)
\(\frac{3}{4}< \frac{4}{5}\)
\(\frac{5}{6}< \frac{6}{7}\)
.....
\(\frac{99}{100}< \frac{100}{101}\)
=>\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.....\frac{100}{101}\)
hay:A<B(đpcm)
b,\(A.B=\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}.\frac{2}{3}.\frac{4}{5}.....\frac{100}{101}\)
\(=\frac{1.2.3....100}{2.3.4....101}=\frac{1}{101}\)
c,vì A<B (theo phần a)
=>A.A<B.A
Mà B.A=\(\frac{1}{101}\)
=>A2<101
Mà A2=\(\left(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\right)^2\)
=>\(\left(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\right)^2\)<\(\frac{1}{101}\)<\(\frac{1}{100}=\frac{1}{10^2}\)
=>\(\left(\frac{1}{2}.\frac{3}{4}.....\frac{99}{100}\right)^2\)<\(\frac{1}{10^2}\)
=>\(\frac{1}{2}.\frac{3}{4}....\frac{99}{100}< \frac{1}{10}\)
Hay A<\(\frac{1}{10}\)
4C=\(5+\frac{5}{4}+\frac{5}{4^2}+.......+\frac{5}{4^{98}}\)
4C-C=\(5-\frac{5}{4^{99}}\)
3C=\(5-\frac{5}{4^{99}}<5\)
\(\Rightarrow C<\frac{5}{3}\)
\(A=\dfrac{5}{4}+\dfrac{5}{4^2}+\dfrac{5}{4^3}+...+\dfrac{5}{4^{99}}\\ 4A=5+\dfrac{5}{4}+\dfrac{5}{4^2}+...+\dfrac{5}{4^{98}}\\ 4A-A=\left(5+\dfrac{5}{4}+\dfrac{5}{4^2}+...+\dfrac{5}{4^{98}}\right)-\left(\dfrac{5}{4}+\dfrac{5}{4^2}+\dfrac{5}{4^3}+...+\dfrac{5}{4^{99}}\right)\\ 3A=5-\dfrac{5}{4^{99}}\\ A=\left(5-\dfrac{5}{4^{99}}\right):3\\ A=\dfrac{5}{3}-\dfrac{5}{4^{99}}:3\\ A=\dfrac{5}{3}-\dfrac{5}{4^{99}\cdot3}< \dfrac{5}{3}\)
Vậy \(A< \dfrac{5}{3}\)