Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: (a-3) chia hết cho 5
(a-4) chia hết cho 7
(a-5) chia hết cho 9
=> 2a-6 chia hết cho 5
2a-8 chia hết cho 7
2a-10 chia hết cho 9
=> 2a-1 chia hết cho 5;7;9
Ta có BCNN (5;7;9) = 315. Vậy thì \(2a-1\in B\left(315\right)\)
Mà a là số tự nhiên có bốn chữ số nên \(2a-1\ge2.1000-1=1999\)
\(\Rightarrow2a-1=2205\Rightarrow a=1103\)
Vậy số cần tìm là 1103.
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )
a) \(n\left(2n-3\right)-2n\left(n+1\right)=2n^2-3n-2n^2-2n=-5n⋮5\)với \(n\inℤ\)
b) \(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)=n^2+3n-4-\left(n^2-3n-4\right)=6n\)
A=4a^2+8ab+4b^2 - 5ab-15b^2 = 4(a+b)^2 - 5b(a+3b) ta thấy -5b(a+3b) luôn là 1 số chia hết 5
Vậy A chia hết 5 thì (a+b) cũng chia hết 5 => B = a^4-b^4 = (a^2+b^2)(a+b)(a-b) cũng chia hết 5