Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)
\(=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
Đặt \(x^2+5xy+5y^2=t\left(t\in Z\right)\) thì:
\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4\)
\(=t^2-y^4+y^4=t^2\)
\(=\left(x^2+5xy+5y^2\right)^2\)
Vì \(x,y,z\in Z\) nên:
\(x^2\in Z,5xy\in Z,5y^2\in Z\)
\(\Leftrightarrow x^2+5xy+5y^2\in Z\)
Vậy \(A\) là số chính phương (Đpcm)
Bạn tự tách hđt nhé! Gõ mỏi tay :v~
\(\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(y+z-2z\right)^2\)
⇔ \(y^2-2yz+z^2+z^2-2xz+x^2+x^2-2xy+y^2=\)\(6(z^2-yz-xz+y^2-xy+x^2)\)
⇔ \(2\left(x^2+y^2+z^2-yz-xz-xy\right)\)=\(6(z^2-yz-xz+y^2-xy+x^2)\)
⇔ \(x^2+y^2+z^2-yz-xz-xy\) = \(3(z^2-yz-xz+y^2-xy+x^2)\)
⇔ \(2x^2+2y^2+2z^2-2xy-2xz-2yz=0\)
⇔ \(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
Mà \(\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\forall x;y;z\)
Do đó \(\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
⇒ \(x=y=z\)
j lắm thế :)))
Bài 2 : ~ bài 1 ngán quá =)))
a, Có
\(5x^2+10y^2-6xy-4x-2y+3\)
\(=\left(x^2-6xy+9y^2\right)+\left(4x^2-4x+1\right)+\left(y^2-2y+1\right)+1\)
\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1>0\forall x;y\)
Do đó không tồn tại x , y tm \(5x^2+10y^2-6xy-4x-2y+3=0\)
b, \(x^2+4y^2+z^2-2x-6x+6y+15=0\)
Câu này đề sai :v bài ngta không cho 2 lần x vậy đâu bạn :)))
ta có (x+y)(x+2y)(x+3y)(x+4y)+y^4
=(x+y)(x+4y)(x+2y)(x+3y)+y^4
=(x^2+5xy+4y^2)(x^2+5xy+6y^2)+y^4
đặt x^2+5xy=a
<=>A=a(a+2y^2)+y^4
=a^2+2.a.y^2+y^4
=(a+y^2)^2
là scp
Có :
A = [(x+y).(x+4y)] . [(x+2y).(x+3y)] + y^4
= (x^2+5xy+4y^2) . (x^2+5xy+6y^2) + y^4
= (x^2+5xy+5y^2)^2 - y^4 + y^4
= (x^2+5xy+5y^2)^2 là số chính phương
Tk mk nha
Lời giải:
\(A=(x+y)(x+2y)(x+3y)(x+4y)+y^4\)
\(A=[(x+y)(x+4y)][(x+2y)(x+3y)]+y^4\)
\(A=(x^2+5xy+4y^2)(x^2+5xy+6y^2)+y^4\)
Đặt \(x^2+5xy+4y^2=a\). Khi đó:
\(A=a(a+2y^2)+y^4=a^2+2ay^2+(y^2)^2\)
hay \(A=(a+y^2)^2\) là một số chính phương.
Ta có đpcm.
\(A=\left(x+y\right)\left(x+2y\right)\left(x+3y\right)\left(x+4y\right)+y^4\)\(A=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)Đặt \(x^2+5xy+5y^2=t\left(t\in Z\right)\)
\(A=\left(t-y^2\right)\left(t+y^2\right)+y^4\)
\(\Rightarrow A=t^2-y^4+y^4\)
\(\Rightarrow A=t^2\)
\(\Rightarrow A=\left(x^2+5xy+5y^2\right)^2\)
Vì \(x;y;z\in Z\)
\(\Rightarrow\left\{{}\begin{matrix}x^2\in Z\\5xy\in Z\\5y^2\in Z\end{matrix}\right.\)\(\Rightarrow x^2+5xy+5y^2\in Z\)
\(\Rightarrow\left(x^2+5xy+5y^2\right)^2\) là số chính phương
Nên a là số chính phương ( đpcm )
a)x5+2x4+3x3+3x2+2x+1=0
<=> x5+x4+x4+x3+2x3+2x2+x2+x+x+1=0
<=>x4(x+1)+x3(x+1)+2x2(x+1)+x(x+1)+(x+1)=0
<=>(x+1)(x4+x3+2x2+x+1)=0
<=>x2(x+1)(x2+x+2+\(\dfrac{1}{x^2}\))=0
<=>x2(x+1)[(x+\(\dfrac{1}{2}\))2+\(\dfrac{7}{4}+\dfrac{1}{x^2}\)]=0
Vì [(x+\(\dfrac{1}{2}\))2\(+\dfrac{7}{4}+\dfrac{1}{x^2}\)]>0 với mọi x thuộc R
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
Vậy S={0;-1}
a. \(A=\left(x^2+5xy+4y^2\right)\left(x^2+5xy+6y^2\right)+y^4\)
Đặt \(t=x^2+5xy+5y^2\left(t\inℤ\right)\)
\(\Rightarrow A=\left(t-y^2\right)\left(t+y^2\right)+y^4=t^2=\left(x^2+5xy+5y^2\right)^2\)
Vậy giá trị của A là một số chính phương
Giải:
Ta có \(N=(x+y)(x+2y)(x+3y)(x+4y)+y^4\)
\(\Leftrightarrow N=(x^2+5xy+4y^2)(x^2+5xy+6y^2)+y^4\)
Đặt \(x^2+5xy+4y^2=a\)
\(\Rightarrow N=a(a+2y^2)+y^4=(a+y^2)^2\) là một số chính phương
Do đó ta có đpcm.
\(\Leftrightarrow N=\left[\left(x-y\right)\left(x-4y\right)\right]\left[\left(x-2y\right)\left(x-3y\right)\right]+y^4\)
\(\Leftrightarrow N=\left(x^2+4y^2-5xy\right)\left(x^2-5xy+6y^2\right)+y^4\)
Đặt \(t=x^2+4y^2-5xy\)
Khi đó
\(N=t\left(t+2y^2\right)+y^4=t^2+2ty^2+\left(y^2\right)^2=\left(y^2+t\right)^2=\left(x^2-5xy+5y^2\right)^2\)
=> N là số chính phương