Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4+4^2+4^3+...+4^{2013}\)
\(A=4+4\left(4+4^2+4^3+...+4^{2016}\right)\)
\(A=4+4\left(A-4^{2013}\right)\Rightarrow A=4+4A-4^{2014}\)
\(3A=4^{2014}-4\)
\(\Rightarrow3A+4=4^{2014}\left(đpcm\right)\)
Số số hạng của tổng đã cho là :
[(2n - 1) - 1] : 2 + 1 = (2n - 2)) : 2 + 1
= 2(n - 1) : 2 + 1
= n - 1 + 1
= n
Trung bình ộng của tổng là :
[(2n - 1) + 1] : 2 = (2n - 1 + 1) : 2
= 2n : 2
= n
Khi đó ; 1 + 3 + 5 = .... + (2n - 3) + (2n - 1) = n.n = n2
Vậy 1 + 3 + 5 = .... + (2n - 3) + (2n - 1) là số chính phương
Câu e đó nấy bạn, mik ghi thiếu đề, đáng lẽ là Chứng tỏ 2S +1 là lũy thừa của 3, sửa lại giúm mik nhoa
a; Ta có A = 1^3 + 2^3 + 3^3 + 4^3 + 5^3 = 1 + 8 + 27 + 64 + 125 = 225 = 15^2
Vì 225 là số chính phương => A là số chính phương
b; B = 3^0 + 3^1 + 3^2 + 3^3 + 3^4 = 1 + 3 + 9 + 27 + 81 = 121 = 11 ^2
VÌ 121 là số chính phương => B là số chính phương
a)
gọi 3 STN liên tiếp là a ;a+1;a+2
=>a+a+1+a+2=a+a+a+1+2=3a+3=3(a+1) chia hết cho 3
=> .. có
b)
gọi 4 STN liên tiếp là a;a+1;a+2;a+3
=>a+a+1+a+2+a+3=a+a+a+a+6=4a+6
=> ko chia hết cho 4
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
\(A=4+4^2+4^3+...+4^{2013}\)
=> \(4A=4^2+4^3+4^4+...+4^{2014}\)
=> \(4A-A=\left(4^2+4^3+4^4+...+4^{2014}\right)-\left(4+4^2+4^3+...+4^{2013}\right)\)
=> \(3A=4^{2014}-4\)
=> \(3A+4=4^{2014}=\left(4^{1007}\right)^2\)
=> đpcm