K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 10 2019

\(\overrightarrow{AB}=\left(-8;-3\right)\) ; \(\overrightarrow{BC}=\left(6;-5\right)\)

Ta có \(\frac{-8}{6}\ne\frac{-3}{-5}\Rightarrow\overrightarrow{AB}\) không cùng phương với \(\overrightarrow{BC}\) hay A;B;C không thẳng hàng \(\Rightarrow\) A;B;C là 3 đỉnh của tam giác

b/ Gọi \(D\left(a;b\right)\Rightarrow\overrightarrow{AD}=\left(a-4;b-4\right)\)

Để ABCD là hbh \(\Rightarrow\overrightarrow{AD}=\overrightarrow{BC}\Leftrightarrow\left\{{}\begin{matrix}a-4=6\\b-4=-5\end{matrix}\right.\) \(\Rightarrow D\left(10;-1\right)\)

c/ Gọi \(M\left(x;y\right)\Rightarrow\overrightarrow{AM}=\left(x-4;y-4\right)\)

\(4\overrightarrow{BC}-5\overrightarrow{AB}=\left(24;-20\right)-\left(-40;-15\right)=\left(64;-5\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x-4=64\\y-4=-5\end{matrix}\right.\) \(\Rightarrow M\left(68;-1\right)\)

d/ Đề thiếu

e/ d thiếu đề nên e cũng ko làm được

3 tháng 3 2023

\(a,\overrightarrow{AB}=\left(2;10\right)\)

\(\overrightarrow{AC}=\left(-5;5\right)\)

\(\overrightarrow{BC}=\left(-7;-5\right)\)

\(b,\) Thiếu dữ kiện

\(c,Cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=\dfrac{\left|2\left(-5\right)+10.5\right|}{\sqrt{2^2+10^2}.\sqrt{\left(-5\right)^2+5^2}}=\dfrac{2\sqrt{13}}{13}\)

\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{AC}\right)=56^o18'\)

\(Cos\left(\overrightarrow{AB},\overrightarrow{BC}\right)=\dfrac{\left|2\left(-7\right)+10\left(-5\right)\right|}{\sqrt{2^2+10^2}.\sqrt{\left(-7\right)^2+\left(-5\right)^2}}\)

\(\Rightarrow\left(\overrightarrow{AB},\overrightarrow{BC}\right)=43^o9'\)

29 tháng 10 2021

a: \(\overrightarrow{BK}=\overrightarrow{BA}+\overrightarrow{AK}\)

\(=\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{AC}\)

\(=\overrightarrow{BA}-\dfrac{1}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\)

\(=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\)

31 tháng 12 2023

Xét ΔBAD có BI là đường trung tuyến

nên \(\overrightarrow{BI}=\dfrac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\)

=>\(\overrightarrow{BI}=\dfrac{1}{2}\left(\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BC}\right)\)

\(=\dfrac{1}{2}\left(\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{5}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{1}{3}\left(5\overrightarrow{BA}+2\overrightarrow{AC}\right)=\dfrac{1}{6}\left(5\overrightarrow{BA}+2\overrightarrow{AC}\right)=\dfrac{5}{6}\left(\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}\right)\)

\(\overrightarrow{BM}=\overrightarrow{BA}+\overrightarrow{AM}\)

\(=\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{AC}\)

=>\(\overrightarrow{BI}=\dfrac{5}{6}\cdot\overrightarrow{BM}\)

=>B,I,M thẳng hàng

25 tháng 12 2023

Cách 1: Dùng định lý Menelaus đảo:

Từ đề bài, ta có \(\dfrac{BD}{BC}=\dfrac{2}{3}\)\(\dfrac{MC}{MA}=\dfrac{3}{2}\)\(\dfrac{IA}{ID}=1\)

\(\Rightarrow\dfrac{BD}{BC}.\dfrac{MC}{MA}.\dfrac{IA}{ID}=1\)

Theo định lý Menelaus đảo, suy ra B, I, M thẳng hàng.

Cách 2: Dùng vector

 Ta có \(\overrightarrow{BI}=\dfrac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BD}\right)\)

\(=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{2}.\dfrac{2}{3}\overrightarrow{BC}\)

\(=\dfrac{1}{2}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\) 

\(=\dfrac{1}{6}\left(3\overrightarrow{BA}+2\overrightarrow{BC}\right)\)

Lại có \(\overrightarrow{BM}=\dfrac{MC}{AC}\overrightarrow{BA}+\dfrac{MA}{AC}\overrightarrow{BC}\)

\(=\dfrac{3}{5}\overrightarrow{BA}+\dfrac{2}{5}\overrightarrow{BC}\)

\(=\dfrac{1}{5}\left(3\overrightarrow{BA}+2\overrightarrow{BC}\right)\)

\(=\dfrac{6}{5}.\dfrac{1}{6}\left(3\overrightarrow{BA}+2\overrightarrow{BC}\right)\)

\(=\dfrac{6}{5}\overrightarrow{BI}\)

Vậy \(\overrightarrow{BM}=\dfrac{6}{5}\overrightarrow{BI}\), suy ra B, I, M thẳng hàng.