K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2018

Ta cóA= 3n+3+2n+3+3n+1+2n+2=3n.27+2n.8+3n.3+2n.4=3n.(27+3)+2n.(8+4)=3n.30+2n.12

Vì 30 chia hết cho 6 ,12 chia hết cho 6 suy ra 3n.30 chia hết cho 6,2n.12 chia hết cho 6 

suy ra 3n.30+2n.12 chia hết cho 6

suy ra A chia hết cho 6

5 tháng 7 2019

\(B=\left(3^{n+3}-2^{n+3}+3^{n+1}-2^{n+1}\right)\)

\(=3^{n+1}\left(3^2+1\right)-2^{n+1}\left(2^2+1\right)\)

\(=3^{n+1}.10-2^{n+1}.5\)

\(=3^{n+1}.10+2^n.2.5\)

\(=3^{n+1}.10+2^n.10\)

\(=10\left(3^{n+1}+2^n\right)\)\(⋮\)\(10\)\(\left(đpcm\right)\)

5 tháng 7 2019

\(Â=3^{n+3}+3^{n+1}+2^{n+3}+2^{n+1}\) 

    \(=3^n\left(3^3+3\right)+2^{n+1}\left(2^2+1\right)\) 

    \(=3^n.30+2^{n+1}.\left(2^2+2\right).\frac{1}{2}\) 

     \(=3^n.30+2^{n+1}.6.\frac{1}{2}\) 

Mà \(3^n.30⋮6;2^{n+1}.6.\frac{1}{2}⋮6\) 

\(\Rightarrow3^n.30+2^{n+1}.6.\frac{1}{2}⋮6\) 

\(\Rightarrow A⋮6\left(đpcm\right)\)

19 tháng 10 2018

a,thay n=1 vào thì sẽ bằng 24 ko chia hết cho 10 nên đề sai

b, \(5^n\left(5^2+5^1+1\right)=5^n.31\)

5 tháng 3 2019

\(\left(3^{n+2}-2^{n+2}+3^n-2^n\right)\)

\(=3^n.3^2-2^n.2^2+3^n-2^n\)

\(=\left(3^n.9+3^n\right)-\left(2^n.4+2^n\right)\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=3^n\left(9+1\right)-2^{n-1}.2\left(4+1\right)\)

\(=3^n.10-2^{n-1}.10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\left(ĐPCM\right)\)

26 tháng 3 2020

Đặt 

\(A_k=1+2+3+....+k=\frac{k\left(k+1\right)}{2}\)

\(A_{k-1}=1+2+3+....+\left(k-1\right)=\frac{k\left(k-1\right)}{2}\)

Ta có:

\(A_k^2-A_{k-1}^2=\frac{k^2\left(k+1\right)^2}{2}-\frac{\left(k-1\right)^2k^2}{2}=\frac{k^2}{2}\left(k^2+2k+1-k^2+2k-1\right)=k^3\)

Khi đó:

\(1^3=A_1^2\)

\(2^3=A_2^2-A_1^2\)

\(...........\)

\(n^3=A_n^2-A_{n-1}^2\)

Khi đó:

\(1^3+2^3+3^3+...+n^3=A_n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

\(\Rightarrow\sqrt{1^3+2^3+......+n^3}=\frac{n\left(n+1\right)}{2}\)

=> ĐPCM

26 tháng 3 2020

Cách khác:

Ta sẽ đi chứng minh \(1^3+2^3+3^3+....+n^3=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

Với n=1 thì mệnh đề trên đúng

Giả sử mệnh đề trên đúng với n=k ta sẽ chứng minh mệnh đề đúng với n=k+1

Ta có:

\(A_k=1^3+2^3+3^3+.....+k^3=\left[\frac{k\left(k+1\right)}{2}\right]^2\)

Ta cần chứng minh:

\(A_{k+1}=1^3+2^3+3^3+.....+\left(k+1\right)^3=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)

Thật vậy !

\(A_{k+1}=1^3+2^3+3^3+.....+\left(k+1\right)^3\)

\(=\left[\frac{k\left(k+1\right)}{2}\right]^2+\left(k+1\right)^3\)

\(=\frac{k^2\left(k+1\right)^2}{4}+\left(k+1\right)^3\)

\(=\left(k+1\right)^2\left(\frac{k^2}{4}+k+1\right)\)

\(=\left[\frac{\left(k+1\right)\left(k+2\right)}{2}\right]^2\)

Theo nguyên lý quy nạp ta có điều phải chứng minh.

17 tháng 3 2019

bạn kia bt làm rồi đăng làm gì? :(( 

17 tháng 1 2020

a)

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(=1-\frac{1}{n-1}< 1\)

=>\(0< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\)

=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\) không phải là số nguyên

mà n -1 là số nguyên 

=> \(S_n=\frac{1^2-1}{1}+\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{n^2-1}{n^2}\)

\(=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)không là số nguyên 

24 tháng 1 2019

Ta có : \(A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)

\(=\left[n\left(n+3\right)\right]\left[\left(n+1\right)\left(n+2\right)\right]\)

\(=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

Đặt : \(n^2+3n=k\)\(\Rightarrow A=k\left(k+2\right)=k^2+2k\)

Ta có : \(\left(k+1\right)^2=\left(k+1\right)\left(k+1\right)\)

\(=k\left(k+1\right)+1\left(k+1\right)\)

\(=k^2+k+k+1=k^2+2k+1\)

Do : \(n\inℕ^∗\Rightarrow n^2+3n>0\)hay : \(k>0\)

\(\Rightarrow k^2+2k>k^2\)

Ta có : \(k^2< k^2+2k< k^2+2k+1\)

hay : \(k^2< k^2+2k< \left(k+1\right)^2\)

Do : \(k^2\)và \(\left(k+1\right)^2\)là hai số chính phương liên tiếp

\(\Rightarrow k^2+2k\)không phải là số chính phương

24 tháng 1 2019

\(Giai\)

\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

\(\text{Đặt:n2+3n=t}\)

\(A=t\left(t+2\right)=\left(t+1\right)^2-1\)

Đến đây cậu đã làm được chưa ạ?