Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Tìm x: \(2^x+x^{x+3}=114\)
2.Cho \(a^3+b^3+c^3=0.\)Chứng tỏ \(a^3b^3+2b^3c^3+3b^3c^3+3a^3c^3\le0\)
Do 2x là số chẵn và 2x+xx+3=114
=>xx+3 là số chẵn =>x={0;2;4;...}
Với x=0 thì 20+03=114(L)
Với x=2 thì 22+25=114(L)
Với x=4 thì 24+47=144 (L)
Do x=4 thì vế trái > vế phải => x>4 thì vế trái càng lớn > vế phải
=>PT trên vô nghiệm
3.
Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Leftrightarrow\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}\) và \(a+2b-3c=-20\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\)
+) \(\dfrac{a}{2}=5\Rightarrow a=5.2=10\)
+) \(\dfrac{2b}{6}=5\Rightarrow2b=5.6=30\Rightarrow b=30:2=15\)
+) \(\dfrac{3c}{12}=5\Rightarrow3c=5.12=60\Rightarrow c=60:3=20\)
Vậy ...
3.
ta có:\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\)=>\(\dfrac{a}{2}\)=\(\dfrac{2b}{6}\)=\(\dfrac{3c}{12}\) và a+2b-3c=-20
áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\dfrac{a}{2}\)=\(\dfrac{2b}{6}\)=\(\dfrac{3c}{12}\)=\(\dfrac{a+2b-3c}{2+6-12}\)\(\dfrac{-20}{-4}\)=5
vì\(\dfrac{a}{2}\)=5=>a=2.5=10
\(\dfrac{2b}{6}\)=5=>2b=5.6=30=>b=30:2=15
\(\dfrac{3c}{12}\)=5=>3c=5.12=60=>c=60:3=20
vậy a=10,b=15,c=20
chúc bạn hok tốt
hỏi mỗi từng câu 1 thôi nhé ! Vậy mình giải cho . Mình k có ý kiếm GP + SP đâu . Nhưng nhìn 8 câu này hoa hết cả mắt :v
Đúng thật. Tớ nhìn cũng thấy ngán mà. Nhiều quá nên hơi nản
Theo tc dãy tỉ số bằng nhau
\(\frac{a-6b}{3c}=\frac{2b-9c}{a}=\frac{3c-3a}{2b}=\frac{a+2b+3c-6b-9c-3a}{3c+a+2b}\)
\(=\frac{a+2b+3a-3\left(2b+3c+a\right)}{3c+a+2b}=\frac{-2.72}{72}=-2\)
\(\Rightarrow a-6b=-6c;3c-3a=-4b\Leftrightarrow3a-4b=3c\)
ta có hệ \(\hept{\begin{cases}a-6b=-6c\\3a-4b=3c\end{cases}\Leftrightarrow\hept{\begin{cases}3a-18b=-18c\\3a-4b=3c\end{cases}}\Leftrightarrow\hept{\begin{cases}-14b=-21c\left(1\right)\\a=-6c+6b\left(2\right)\end{cases}}}\)
Theo giả thiết \(a+2b+3c=72\Rightarrow a=-2b-3c-72\)
\(\Rightarrow-2b-3c-72=-6c+6b\Leftrightarrow8b-3c+72=0\Leftrightarrow8b-3c=-72\)
(1) => \(\frac{b}{-21}=\frac{c}{-14}\)Theo tc dãy tỉ số bằng nhau
\(\frac{b}{-21}=\frac{c}{-14}=\frac{8b-3c}{8\left(-21\right)-3\left(-14\right)}=-\frac{72}{-126}=\frac{4}{7}\Rightarrow b=-12;c=-8\)
Thay vào (2) vậy \(a=-6c+6b=-6\left(-8\right)+6\left(-12\right)=48-72=-24\)
\(a^3b^3+2b^3c^3+3a^3c^3\) \(=a^3b^3+2b^3c^3+2a^3c^3+a^3c^3\) \(=a^3\left(b^3+c^3\right)+2c^3\left(a^3+b^3\right)\) \(=-a^6-2c^6\le0\) (đúng) .Dấu "=" khi: \(a=b=c=0\)