K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2023

Ta có:

\(a^3+b^3=2\)

\(\Rightarrow\left(a+b\right)\left(a^2-ab+b^2\right)=2\)

\(\Rightarrow a+b=\dfrac{2}{a^2-ab+b^2}\)

Mà: \(2\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow2\left(a^2-2ab+b^2\right)\ge0\)

\(\Rightarrow2a^2-4ab+2b^2\ge0\)

\(\Rightarrow2a^2+2a^2-4ab+2b^2+2b^2\ge2a^2+2b^2\)

\(\Rightarrow4a^2-4ab+4b^2\ge2\left(a+b\right)^2\)

\(\Rightarrow4\left(a^2-ab+b^2\right)\ge2\left(a+b\right)^2\ge\left(a+b\right)^2\)

\(\Rightarrow a^2-ab+b^2\ge\dfrac{\left(a+b\right)^2}{4}\)

\(\Rightarrow\dfrac{2}{a^2-ab+b^2}\le\dfrac{8}{\left(a+b\right)^2}\)

\(\Rightarrow a+b\le\dfrac{8}{\left(a+b\right)^2}\)

\(\Rightarrow\left(a+b\right)^3\le8\)

\(\Rightarrow a+b\le2\)

Vậy: \(A_{max}=2\)

29 tháng 12 2015

\(a^3+b^3\ge ab\left(a+b\right)\Leftrightarrow3\left(a^3+b^3\right)\ge3ab\left(a+b\right)\Leftrightarrow4\left(a^3+b^3\right)\ge a^3+b^3+3ab\left(a+b\right)=\left(a+b\right)^3\)

<=> \(2^3\ge\left(a+b\right)^3\)

19 tháng 9 2015

Đặt a = 1-x

\(^{a^3+b^3=2=>b^3=2-a^3=2-\left(1-x\right)^3=1+x^3-3x^2+3x\le x^3+3x^2+3x+1=\left(x+1\right)^3=>b^3\le\left(x+1\right)^3=>b\le x+1}\)N=a+b\(\le\)1-x+x+1=2   

Vậy Max N = 2 <=> x=0 <=> a=b=1

19 tháng 9 2015

a3 + b3 = (a + b).(a2 - ab + b2) = 2 

ta có: a2 - ab + b= (a - (b/2))2 + 3b2/4 => a- ab + b\(\ge\) 0. Do đó, a + b > 0 (do 2> 0)

Áp dụng bất đẳng thức Bu nhi cốp xki ta có: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\Rightarrow\left(a+b\right)^4\le4\left(a^2+b^2\right)^2\)

Tiếp tục áp dụng bất đẳng thức Bunhi cốp xki với các số \(a\sqrt{a};\sqrt{a};b\sqrt{b};\sqrt{b}\) ta có

=> \(\left(a+b\right)^4\le4\left(a^2+b^2\right)^2=4\left(a\sqrt{a}.\sqrt{a}+b\sqrt{b}.\sqrt{b}\right)^2\le4.\left(a^3+b^3\right)\left(a+b\right)=8\left(a+b\right)\)

Do a + b > 0 nên \(\left(a+b\right)^3\le8\Rightarrow a+b\le\sqrt[3]{8}=2\)

=> Max N = 2 khi a = b = 1

17 tháng 5 2019

giả sử a + b > 2.

đặt a = x + y ; b = x - y, ta có :

a + b = 2x  > 2 \(\Rightarrow\)x > 1                                 ( 1 )

Ta có : a3 + b3 = ( x + y )3 + ( x - y )3 = 2x3 + 6xy2 

do ( 1 ) nên 2x3 > 2 ; 6xy2 \(\ge\)0 . 

vậy a3 + b3 > 2, trái với giả thiết

\(\Rightarrow\)a + b \(\le\)2

17 tháng 5 2019

Đặt a = 1 + x  => \(b^3=2-a^3=2-\left(1+x\right)^3=1-3x-3x^2-x^3\le1-3x+3x^2-x^3=\left(1-x\right)^3\)

\(\Rightarrow b\le1-x\). Ta lại có a = 1 + x , nên : \(a+b\le1+x+1-x=2\)

Với a = 1 ; b = 1 thì \(a^3+b^3=2;a+b=2\)

Vậy max N = 2 khi a = b = 1

30 tháng 12 2015

\(a^3+b^3=2\Rightarrow b=\sqrt[3]{2-a^3}\)

\(a+b=a+\sqrt[3]{2-a^3}\)

Ta chứng minh: \(a+\sqrt[3]{2-a^3}\le2\Leftrightarrow a-2\le\sqrt[3]{a^3-2}\Leftrightarrow\left(a-2\right)^3\le a^3-2\)

\(\Leftrightarrow-6a^2+12a-6\le0\Leftrightarrow6\left(a-1\right)^2\ge0\text{ }\left(\text{đúng }\forall a\in R\right)\)

Vậy \(a+b\le2.\)

Đẳng thức xảy ra khi \(a=b=1.\)

KL: GTLN của a+b là 2.

31 tháng 12 2015

 Mr Lazy đây là tìm điểm cực trị chứ không phải là chứng minh bạn ơi

30 tháng 12 2015

j` đây hjhj lớp 7 mà thể hiện hjhj

30 tháng 12 2015

tớ chỉ giỏi toán GPT thôi nhé

AH
Akai Haruma
Giáo viên
31 tháng 12 2023

Bạn nên viết lại đề bằng công thức toán để mọi người iheeur đề của bạn hơn nhé.