K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2017

A =  3 + 32 + 33 + ... + 39 + 310

A = (3 + 32) + (33 + 34) + ... + (39 + 310)

A = 12 + 32.(3 + 32) + ... + 38. (3 + 32)

A = 12 + 32 . 12 + ... + 38 . 12

A = 12 (1 + 32 + ... + 38\(⋮4\)

Vậy A chia hết cho \(4\)

 
10 tháng 12 2017

3 + 32 + 33 + ... + 39 + 310

= (3 + 32) + (33 + 34) + ... + (39 + 310)

= 12 + 32.(3 + 32) + ... + 38. (3 + 32)

= 12 + 32 . 12 + ... + 38 . 12

= 12 .(1 + 32 + ... + 38) chia hết cho 4

2 tháng 11 2016

Chọn

Giải ra đầy đủ nhá

2 tháng 11 2016

Ôi tr. Ý mk mún nói là giải bài ra cho mình

20 tháng 12 2016

\(A=3+3^2+...+3^9+3^{10}\)

\(=\left(3+3^2\right)+...+\left(3^9+3^{10}\right)\)

\(=3\left(1+3\right)+...+3^9\left(1+3\right)\)

\(=3\cdot4+...+3^9\cdot4\)

\(=4\left(3+...+3^9\right)⋮4\)

20 tháng 12 2016

Ta có:

\(A=3+3^2+...+3^{10}\)

\(\Rightarrow A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)

\(\Rightarrow A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)

\(\Rightarrow A=3.4+3^3.4+...+3^9.4\)

\(\Rightarrow A=\left(3+3^3+...+3^9\right).4⋮4\)

\(\Rightarrow A⋮4\)

Vậy \(A⋮4\)

29 tháng 11 2018

10 bn nhanh nhất k nha

29 tháng 11 2018

\(a,\)Ta có:

\(A=3+3^2+3^3+...+3^{10}\)

    \(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)

    \(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^9\left(1+3\right)\)

    \(=3\cdot4+3^3\cdot4+...+3^9\cdot4\)

    \(=4\left(3+3^3+...+3^9\right)⋮4\)

\(\Rightarrow3+3^2+3^3+...+3^{10}⋮10\\ \Rightarrow A⋮10\)

\(\Rightarrow\)ĐPCM

13 tháng 10 2019

a,26.3+17.43=26.3+17.26=26.(3+17)=26.20 chia hết cho 10

b,Ta có A=(3+32+33)+...+(3100+3101+3102)=40+40.33+...+40.3100 =40.(1+33+...+3100) chia hết cho 4

A=(3+32)+...+(3101+3102)=13.(32+...+3100) chia hết cho 13

c,Ta có C có 10 số hạng. mà mỗi số hang của C đếu có tận cùng là 1 nên C có tận cùng là 0 chia hheets cho 5

2.Với n=2k=>n.(n+3) chia hết cho 2

với n=2k+1=>n+3 chia hết cho 2=>

n.(n+3) chia hết cho 2

=>với n thuộc N thì n.(n+3) chia hết cho 2

8 tháng 12 2018

Ta có ;

S = 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 

    = ( 1 + 2 ) + ( 2 + 2 3 ) + ( 2 + 2 ) + ( 2 + 2 )

    = ( 1 + 2 ) + 2 2 ( 1 + 2 ) + 2 4 ( 1 + 2 ) + 2 6 ( 1 + 2 )

    = 3 + 2 2 .3 + 2 4 .3 + 2 6 .3

    = 3 . ( 1 + 2 2 + 2 4 + 2 6 )  chia hết cho 3  (  Vì 3 chia hết cho 3 )

 A = 3 + 3 + 3 + ..... + 3 + 3 10

    = ( 3 + 3 2 ) + ( 3 3 + 3 4 ) .... + ( 3 9 + 3 10 )

    = 3 ( 1 + 3 ) + 3 3 . ( 1 + 3 ) + .... + 3 9 ( 1 + 3 )

    = 3 . 4 + 3 3 . 4 + .... + 3 9 . 4

    = 4 . ( 3 + 33 + ... + 3 9 ) chia hết cho 4 ( Do 4 chia hết cho 4 )

8 tháng 12 2018

\(S=\left(1+2\right)+\left(2^2+2^3\right)+\left(2^4+2^5\right)+\left(2^6+2^7\right)\)

\(S=3+3\cdot2^2+3\cdot2^4+3\cdot2^6=3\left(1+2^2+2^4+2^6\right)⋮3\)

\(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^9+3^{10}\right)\)

\(A=4\cdot3+4\cdot3^3+...+4\cdot3^9=4\cdot\left(3+3^3+...+3^9\right)⋮4\)

10 tháng 12 2015

á đù lâu ko gặp kẻ giả mạo!anh_hung_lang_la

25 tháng 12 2019

Ta có : A=3+32+33+...+310

              =(3+32)+(33+34)+...+(39+310)

              =3(1+3)+33(1+3)+...+39(1+3)

              =3.4+33.4+...+39.4

Vì 4 chia hết cho 4 nên 3.4+33.4+...+39.4 chia hết cho 4

hay A chia hết cho 4

Vậy A chia hết cho 4.

25 tháng 12 2019

Ta có : A=3+32+33+...+310

              =(3+32)+(33+34)+...+(39+310)

              =3(1+3)+33(1+3)+...+39(1+3)

              =3.4+33.4+...+39.4

Vì 4 chia hết cho 4 nên 3.4+33.4+...+39.4 chia hết cho 4

hay A chia hết cho 4

Vậy A chia hết cho 4.

5 tháng 1 2017

minh chi lam dc cau a thoi nha nhung hay t i c k cho minh

3 + 32 = 12 chia het cho 4  3 + 32 + 33 + .......+39 + 310 = 30 .[ 3+32 ] + 32 . [ 3 + 3] + ....+38 . [ 3 + 32 ]

=30 . 12 + 3 . 12 +.....+ 38 . 12 = 12.[3+ 32 +....+ 38 ] 

vi 12 chia het cho 4 nen 12 nhan voi so tu nhien nao thi so do cung chia het cho 4 nen A chia het cho 4

10 tháng 12 2017

hghjhgjhgjh

20 tháng 3 2020

trả lời đi mọi ngừi ư

20 tháng 3 2020

Mọi người giúp mình lên điểm hỏi đáp đi. Mình cảm ơn!