Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3+32+...+3100
3A=32+33+...+3101
3A-A=(32+33+...+3101)-(3+32+...+3100)
2A=3101-3
a) 2A+3=3101-3+3=3101=3n
=>n=101
b) A=3+32+...+3100
A=(3+32)+...+(399+3100)
A=3.(1+3)+...+399.(1+3)
A=3.4+...+399.4
A=(3+...+399).4
=>A chia hết cho 4
A=3+32+...+3100
A=(3+32)+...+(399+3100)
A=3.(3+32)+...+399.(3+32)
A=3.12+...+399.12
A=(3+...+399).12
=>A chia hết cho 12
A=\(A=3+3^2+3^3+.....+3^{100}\\ \Rightarrow3A=3^2+3^3+....+3^{101}\\ \Rightarrow2A=3^{101}-3\\ \Rightarrow A=\frac{3^{101}-3}{2}\\ \)
a) \(A=\frac{3^{101}-3}{2}\\ \Rightarrow 2A=3^{101}-3\\ \Rightarrow2A+3=3^{101}-3+3=3^{101}=3^n\\ \Rightarrow n=101\)
b) \(3+3^2+3^3+....+3^{100}\\ =\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{98}+3^{100}\right)\\ =3\left(1+3\right)+3^3\left(1+3\right)+...+3^{98}\left(1+3\right)\\ =3.4+3^3.4+...+3^{98}.4\)
Vậy A chia hết cho 4 ; A cũng chia hết cho 3 vì mỗi số hạng của A đều chia hết cho 3
Mà (3;4)=1 => a chia hết cho 12
\(a,P=1+3+3^2+...+3^{50}\)
\(=\left(1+3+3^2\right)+3^3\left(1+3+3^2\right)+...+3^{48}\left(1+3+3^2\right)\)
\(=13+3^3.13+...+3^{48}.13\)
\(=13\left(1+3^3+...+3^{48}\right)⋮13\)
\(b,3P=3+3^2+3^4+...+3^{51}\)
\(\Rightarrow3P-P=3^{51}-1\)
\(\Rightarrow2P=3^{51}-1\)
\(=\left(...7\right)-1\)
\(=\left(...6\right)\)
=> P có tận cùng là 3 hoặc 8
Mà scp có tận cùng là 0;1;4;5;6;9
=> P ko phải là scp
Vậy ..........
a/
\(A=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)=\)
\(=13\left(3+3^4+3^7+...+3^{118}\right)⋮13\)
\(A=3\left(1+3+3^2+3^3\right)+...+3^{117}\left(1+3+3^2+3^3\right)=\)
\(A=40\left(3+3^5+3^9+...+3^{117}\right)⋮40\)
b/
\(A=3+3^2\left(1+3+3^2+...+3^{118}\right)=\)
\(=3+9\left(1+3+3^2+...+3^{118}\right)\) chia 9 dư 3 nên A không chia hết cho 9
c/
\(3A=3^2+3^3+3^4+...+3^{121}\)
\(\Rightarrow2A=3A-A=3^{121}-3\Rightarrow2A+3=3^{121}\)
\(2A+3=3^{121}=3.3^{120}=3.\left(3^4\right)^{30}=3.81^{30}\) có tận cùng là 3 nên 2A+3 không phải là số chính phương
A = 1 + 3^1 + 3^2 + ... + 3^99
3A = 3 + 3^2+ 3^3 + ... + 3^100
3A = ( 3 + 3^2 ) + ( 3^3 + 3^4 ) + ... + ( 3^99 + 3^100 )
3A = 3 ( 1 + 3 ) + 3^3 ( 1 + 3 ) + ... + 3^99 ( 1 + 3 )
3A = 3 . 4 + 3^3 . 4 + ... + 3^99 . 4
3A = 4 . ( 3 + 3^3 + 3^99 ) \(⋮\)4
help mình!!!!!plz
https://olm.vn/hoi-dap/detail/258202696527.html
https://olm.vn/hoi-dap/detail/258180737788.html
câu a, b trên mạng có nha
c) do 3 +3^2+3^3+..+3^2004 chia hết cho 3
mà 3 ko chia hết cho 3^2 , 3^2 chia hét cho 3^2 ,.., 3^2004 chia hết cho 3^2 => a ko chia hết cho 3^2
=> a ko là scp ( do scp chie hết cho 3 , ko chia hết cho 3^2 , 3 nguyên tố)
a, Ta có:
3A=32+33+34+.......+351
3A-A=(32+33+34+.......+351)-(3+32+33+.......+350)
2A=351-3
2A+3=351-3+3
2A+3=351
Vì 351 ko phải số chính phương =>2A+3 ko phải là số chính phương
b, ta có
A=(3+32)+(33+34)+.....+(349+350)
A=12+(3+32)32+.....+(3+32)48
A=12+12.9+.......+12.48
A=12(1+9+....+48)\(⋮12\)
\(\Rightarrow A⋮12\)