K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2015

c)D=4+42+43+44+...+42012

D=(4+42)+(43+44)+...+(42011+42012)

D=4.5+43.5+45.5+...+42011.5

D=5.(4+43+42011)

=>D chia hết cho 5

=>ĐPCM

1 tháng 11 2015

tất cả đều có trong câu hỏi tương tự

20 tháng 10 2015

a) A luôn chia hết cho 3

A = (3 + 32) + (3+ 34) + ...+ (31997 + 31998) = 3.(1 + 3) + 33.(1 + 3) + ...+ 31997.(1 + 3) = 4.(3 + 3+ ...+ 31997

=> A chia hết cho 4 ; A chia hết cho 3 => A chia hết cho 12

A = (3 + 3+ 33) + ...+ (31996 + 31997 + 31998)  = 3.(1 + 3 + 32) + ...+ 31996.(1 + 3+ 32) = 13.(3 + 34 + ...+ 31996

=> A chia hết cho 13. A chia hết cho 3 => A chia hết cho 39

b) A = (3 + 3+ 3+ 34) + ..+ (3997 + 3998 + 3999 + 31000

A = 3.(1 + 3 + 3+ 33) + ...+ 3997.(1 + 3 + 3+ 33) = 40.(3 + ...+ 3997

=> A chia hết cho 40 ; A chia hết cho 3

=> A chia hết cho 40.3 = 120

Vậy...

24 tháng 11 2016

Loan trả lời đúng rùi,phục waaaaaaaaaaaaa!

30 tháng 9 2017

a) \(A=2+2^2+...+2^{120}\)

\(\Rightarrow A=\left(2+2^2\right)+...+\left(2^{119}+2^{120}\right)\)

\(\Rightarrow A=\left(2+2^2\right)+...+2^{118}.\left(2+2^2\right)\)

\(\Rightarrow A=6+...+2^{118}.6\)

\(\Rightarrow A=6.\left(1+...+2^{118}\right)⋮3\Rightarrow A⋮3\left(đpcm\right)\)

b) \(A=2+2^2+...+2^{120}\)

\(\Rightarrow A=\left(2+2^2+2^3\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)

\(\Rightarrow A=\left(2+2^2+2^3\right)+...+2^{117}.\left(2+2^2+2^3\right)\)

\(\Rightarrow A=14+...+2^{117}.14\)

\(\Rightarrow A=14.\left(1+...+2^{117}\right)⋮7\Rightarrow A⋮7\left(đpcm\right)\)

16 tháng 10 2021

\(B=3+3^2+3^3+....+3^{120}\)

a, Ta thấy : Cách số hạng của B đều chi hết cho 3 

\(B=3+3^2+3^3+....+3^{120}⋮3\)

\(b,B=3+3^2+3^3+....+3^{120}\)

\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{119}+3^{120}\right)\)

\(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)

\(B=3.4+3^3.4+...+3^{119}.4\)

\(B=4\left(3+3^3+...+3^{199}\right)\)

Có : \(B=4\left(3+3^3+...+3^{199}\right)⋮4\)

\(\Rightarrow B⋮4\)

\(c,B=3+3^2+3^3+....+3^{120}\)

\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)

\(B=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{118}\left(3+3^2\right)\)

\(B=13+3^2.13+...+3^{118}.13\)

\(B=13\left(3^2+3^4+...+3^{118}\right)\)

Có : \(B=13\left(3^2+3^4+...+3^{118}\right)⋮13\)

\(\Rightarrow B⋮13\)

28 tháng 11 2024

lạnh quá đừng ra đề nx

 

12 tháng 1 2017

Bài 1 :

chứng minh A = 2 + 2^2 + 2^3 + ........... + 2^2009 + 2^2010 chia hết 42

ta thấy 42 = 2 x 3 x  7

A chia hết 42 suy ra A phải chia hết cho 2;3;7

mà ta thấy tổng trên chia hết cho 2 suy ra A chia hết cho 2  (1)

số số hạng ở tổng A là : ( 2010 - 1 ) : 1 + 1 = 2010 ( số )

ta chia tổng trên thành các nhóm mỗi nhóm 2 số ta được số nhóm là : 2010 : 2 = 1005 ( nhóm )

suy ra A = ( 2 + 2^2 ) + ( 2^3 + 2^4 ) + ...............+ ( 2^2009 + 2^2010 )

A = 2 x ( 1 + 2 ) + 2^3 x ( 1 + 2 ) + ................. + 2^2009 x ( 1 + 2 )

A = 2 x 3 + 2^3 x 3 + ............. + 2^2009 x 3 

A = 3 x ( 2 + 2^3 + ........... + 2^2009 ) chia hết cho 3 

suy ra A chia hết cho 3 ( 2 )

ta chia nhóm trên thành các nhóm mỗi nhóm 3 số ta có số nhóm là : 2010 : 3 = 670 ( nhóm )

suy ra A = ( 2 + 2^2 + 2^3 ) + ( 2^4 + 2^5 + 2^6 ) + ................. + ( 2^2008 + 2^2009 + 2^2010 )

A = 2 x ( 1 + 2 + 2^2 ) + 2^4 x ( 1 + 2 + 2^2 ) + .................. + 2^2008 x ( 1 + 2 + 2^2 )

A = 2 x ( 1 + 2 + 4 ) + 2^4 x ( 1 + 2 + 4 ) + ................ + 2^2008 x ( 1 + 2 + 4 )

A = 2 x 7 + 2^4 x 7 + ............. + 2^2008 x 7

A = 7 x ( 1 + 2^4 + ........ + 2^2008 ) chia hết cho 7 

suy ra A chia hết cho 7 (3)

từ (1) ; (2) và (3) suy ra A chia hết cho 2;3;7 

suy ra A chia hết cho 42 ( điều phải chứng minh )

7 tháng 10 2015

Chứng minh rằng:
a) 3 + 32 +.....+ 31998 

 = (3 + 32)+(33+34) +(35+36) .....+ (31997+31998 )

            có 1998: 2 = 999 nhóm 

= (3 + 32) + 32.(3 + 32) +34.(3 + 32) .....+ 31996(3 + 32)

= 12 + 32.12 +34.12 +....+ 31996.12

= 12( 1+32+34+.......+31996)  chia hết cho 12
b) 3 + 3+....+ 31998 

= (3 + 3+33) + (34 + 3+36) + .. + (31996 + 31997 +31998)  có 1998 : 3 = 666 nhóm

= (3 + 3+33) + 33.(3 + 3+33)+ ...+31995.(3 + 3+33)

= 39 +33.39 + .....+31995.39

= 39(1+33+....+31995) chia hết cho 39

c) 3 + 3+.....+ 3100 chia hết cho 120

nhóm mỗi nhóm 4 số hạng tương tự như hai câu trên ta được thừa số chung là 120

1 tháng 9 2017

mk biết làm câu a thôi :(

1 tháng 9 2017

mình cũng chỉ làm được câu a thôi. hì hì

1 tháng 9 2017

Ta có :

a . A = 1 + 3 + 32 + 33 + ... + 399

         = ( 1 + 3 ) + ( 32 + 33 ) + ( 34 + 35 ) + ... + ( 398 + 399 )

         = 1. ( 1 + 3 ) + 32 . ( 1 + 3 ) + 34 . ( 1 + 3 ) + ... + 398 . ( 1 + 3 )

         = 1 . 4 + 32 . 4 + 34 . 4 + ... + 398 . 4

         = ( 1 + 32 + 34 + ... + 398 ) .4 \(⋮\)4 ( đpcm ) .

b . Vì 164 = 41 . 4

    Nên nếu A chia hết cho 41 thì A cũng chia hết cho 164 ( do A chia hết cho 4 )

          

1 tháng 9 2017

cảm ơn bạn.