\(A=3+3^2+3^3+...+3^{100}\)

Chứng tỏ rằng \(2A+3\) ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

Ta có :

\(A=3+3^2+3^3+...+3^{100}\)

\(\Leftrightarrow\)\(3A=3^2+3^3+3^4+...+3^{101}\)

\(\Leftrightarrow\)\(3A-A=\left(3^2+3^3+3^4+...+3^{101}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)

\(\Leftrightarrow\)\(2A=3^{101}-3\)

\(\Leftrightarrow\)\(A=\frac{3^{101}-3}{2}\)

\(\Rightarrow\)\(2A+3=\frac{3^{101}-3}{2}.2+3=3^{101}-3+3=3^{101}\) 

Vì \(3^{101}\) là một luỹ thừa của \(3\)nên \(2A+3\) là một luỹ thừa của \(3\)

 Vậy \(2A+3\)laf một luỹ thừa của \(3\)

11 tháng 2 2018

\(A=3+3^2+......+3^{100}\)

\(\Leftrightarrow3A=3^2+3^3+.....+3^{101}\)

\(\Leftrightarrow3A-A=\left(3^2+3^3+.....+3^{101}\right)-\left(3+3^2+...+3^{100}\right)\)

\(\Leftrightarrow2A=3^{101}-3\)

\(\Leftrightarrow2A+3=3^{101}\)

\(\Leftrightarrow2A+3\) là 1 lũy thừ của 3

18 tháng 7 2017

1,

\(A=2^0+2^1+2^2+..+2^{2006}\)

\(=1+2+2^2+...+2^{2016}\)

\(2A=2+2^2+2^3+..+2^{2007}\)

\(2A-A=\left(2+2^2+2^3+..+2^{2007}\right)-\left(1+2+2^2+..+2^{2006}\right)\)

           \(A=2^{2017}-1\)

\(B=1+3+3^2+..+3^{100}\)

\(3B=3+3^2+3^3+..+3^{101}\)

\(3B-B=\left(3+3^2+..+3^{101}\right)-\left(1+3+..+3^{100}\right)\)

\(2B=3^{101}-1\)

\(\Rightarrow B=\frac{3^{100}-1}{2}\)

\(D=1+5+5^2+...+5^{2000}\)

\(5D=5+5^2+5^3+...+5^{2001}\)

\(5D-D=\left(5+5^2+..+5^{2001}\right)-\left(1+5+...+5^{2000}\right)\)

\(4D=5^{2001}-1\)

\(D=\frac{5^{2001}-1}{4}\)

18 tháng 7 2017

các bn giúp mk nha càng nhanh càng tốt

ai nhanh mk TC cho

28 tháng 6 2015

A=4+22+23+...+220

Đặt B=22+23+...+220

=>2B=23+24+...+221

=>2B-B=221-22=221-4

=>A=4+B=4+221-4=221

=>A là lũy thừa của 2(ĐPCM)

b)A=3+32+33+...+3100

=>3A=32+33+...+3101

=>3A-A=3101-3

=>2A=3101-3

=>2A+3=3101-3+3=3101

Vậy 2A+3 là lũy thừa của 3(ĐPCM)

28 tháng 6 2015

a/

\(2A=8+2^3+...+2^{21}\)

\(2A-A=A=2^{21}+8-4-2^2=2^{21}\)

b/

\(3B=3^2+3^3+...+3^{101}\)

\(\Rightarrow3B-B=2B=3^{101}-3\)

\(\Rightarrow2B+3=3^{101}\)

25 tháng 5 2017

Ta có :

\(S=1+3+3^2+3^3+..........+3^{99}\)

\(\Rightarrow3S=3+3^2+3^3+3^4+...................+3^{99}+3^{100}\)

\(\Rightarrow3S-S=\left(3+3^2+3^3+............+3^{100}\right)-\left(1+3+3^2+..........+3^{99}\right)\)

\(\Rightarrow2S=3^{100}-1\)

\(\Rightarrow2S+1=3^{100}-1+1=3^{100}\)

\(\Rightarrow2S+1\) là lũy thừa của \(3\)

13 tháng 5 2018

Đáp án nè:

Đặt A=\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{99}}\)

3A=\(\dfrac{1}{1}-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\)

3A+A=\(\left(\dfrac{1}{1}-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{99}{3^{98}}-\dfrac{100}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{99}{3^{99}}-\dfrac{100}{3^{100}}\right)\)

4A=\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}-\dfrac{1}{3^{100}}\)

4A bé hơn(sorry tớ không thấy dấu bé hơn)\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)

Đặt B=\(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\)

3B=\(3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\)

4B=\(3-\dfrac{1}{3^{99}}\) bé hơn 3 \(\Rightarrow\)B bé hơn \(\dfrac{3}{4}\)

\(\Rightarrow\) 4A bé hơn\(\dfrac{3}{4}\Rightarrow\)A bé hơn \(\dfrac{3}{16}\)

Tick cho mình nha , ngồi đánh máy tính mỏi cả mắt lun

Chúc học tốtvui

5 tháng 10 2017

S= 1+3+3^2+3^3+...+3^99

3S= 3+3^2+3^3+...+3^99+3^100

3S-S= (3+3^2+3^3+...+3^100)-(1+3+3^2+3^3+...+3^99)

2S= 3^100-1

2S+1 => 3^100-1+1 => 3^100

Vậy 2S+1 là luỹ thừa cơ số 3

2 tháng 11 2019

Bài 1: Ta có: \(B=3+3^2+3^3+...+3^{2005}\)

    \(3B=3^2+3^3+3^4+...+3^{2006}\)

\(3A-A=3^{2006}-3\)

Hay \(2A=3^{2006}-3\)

+) Ta có: 2B+3=\(\left(3^{2006}-3\right)+3\)

\(\Rightarrow2B+3=3^{2006}\)

Vậy 2B+3 là lũy thừa của 3

b) Ta có: \(A=3+3^2+...+3^{100}\)

\(3A=3^2+3^3+...+3^{101}\)

\(3A-A=3^{101}-3\)

Hay \(2A=3^{101}-3\)

+) theo đề ra, ta có: \(2A+3=3^n\)

\(\Rightarrow\left(3^{101}-3\right)+3=3^{101}=3^n\)

\(\Rightarrow n=101\)

Mỏi tay wóa!!! Học tốt nha^^

 B1

Có B=3+32+...+32005

=>3B=32+33+...+32006

=>2B=3B-B=32006-3

=>2B+3=32006-3+3=32006

=>Đpcm

B2

Có A=3+32+..+3100

=>3A=32+33+...+3101

=>2A=3A-A=3101-3

=>2A+3=3101-3+3=3101=3n

=>n=101

26 tháng 3 2017

ai giúp vs