\(A=3+3^2+3^3+...+3^{100}\)

a. Số A là số nguyên tố hay hợp số? Vì sao?

b...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2018

Mỗi phần tử của A đều chia hết cho 3

nên A chia hết cho 3 và lớn hơn 3 nên là hợp số

b, Các phần tử của A đều chia hết cho 9 ngoại trừ 3

=> A KHÔNG CHIA HẾT CHO 9. Vì A ko chia hết cho 9 mà chia hết cho 3

nên không là số chính phương

3 tháng 6 2019

Câu 1 bạn dùng chia hết cho 13

Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8

Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1

Khi đó ta có x^2+3x-4=(x-1)(x+4)

đến đây thì dễ rồi

Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra

Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2

Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra

3 tháng 6 2019

Cảm ơn bạn Ninh Đức Huy.

1. Giả sử p và q là các số nguyên sao cho: \(\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....-\frac{1}{1334}+\frac{1}{1335}\)CMR: \(P⋮2003\)2. CM:\(\forall n\in N,n\ge2\)thì\(An=2^{2^n}+4⋮10\)3.CM: \(\forall n\in N,n\ge1\)thì \(Bn=4^n+15n-1⋮9\)4.CM: \(\forall n\in Z,n\ge0\)thì \(Cn=2^{3^n}+1⋮3n+1\)nhưng \(⋮̸3^n+2\)5.CM:tổng hợp phương của 3 số tự nhiên liên tiếp n,n+1,n+2\(⋮9\forall n\ge0\)6. Cm: A=\(\frac{5^{125}-1}{5^{25}-1}\)không...
Đọc tiếp

1. Giả sử p và q là các số nguyên sao cho: \(\frac{p}{q}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....-\frac{1}{1334}+\frac{1}{1335}\)

CMR: \(P⋮2003\)

2. CM:\(\forall n\in N,n\ge2\)thì\(An=2^{2^n}+4⋮10\)

3.CM: \(\forall n\in N,n\ge1\)thì \(Bn=4^n+15n-1⋮9\)

4.CM: \(\forall n\in Z,n\ge0\)thì \(Cn=2^{3^n}+1⋮3n+1\)nhưng \(⋮̸3^n+2\)

5.CM:tổng hợp phương của 3 số tự nhiên liên tiếp n,n+1,n+2\(⋮9\forall n\ge0\)

6. Cm: A=\(\frac{5^{125}-1}{5^{25}-1}\)không phải là một số nguyên tố 

7.Tìm tất cả các số nguyên tố P sao cho tổng của tất cả các ước số tự nhiên của các phương trình là 1 số chính phương

8. Biết P và \(8p^2-1\)cũng là số nguyên tố

9. Tìm tất cả các số nguyên tố có 4 chữ số \(\overline{abcd}\)sao cho \(\overline{ab}\)\(\overline{ac}\)là các số nguyên tố và \(b^2=\overline{cd}+b-c\)

10.Cho \(\overline{abc}\)là 1 số nguyên tố. CM phương trình: \(ax^2+bx+c=0\)không có nghiệm hữu tỉ

 

0
10 tháng 5 2015

chua chac tan cung la cac so do da la so chinh phuong

15 tháng 9 2016

Gọi ƯCLN của a‐c và b‐c là d

Mà a; b; c là 3 số đôi một nguyên tố cùng nhau nên d = 1

Do đó a‐c và b‐c là hai số chính phương. Đặt a‐c = p2; b‐c = q2

﴾ p; q là các số nguyên﴿

c2 = p2q2c = pq a+b = ﴾a‐ c﴿ + ﴾b – c﴿ + 2c = ﴾ p+ q﴿2 là số chính phương.

1 tháng 8 2017

4. \(\sqrt{x}+\sqrt{y}=6\sqrt{55}\)

\(6\sqrt{55}\)  là số vô tỉ, suy ra vế trái phải là các căn thức đồng dạng chứa  \(\sqrt{55}\)

Đặt  \(\sqrt{x}=a\sqrt{55};\sqrt{y}=b\sqrt{55}\)  với  \(a,b\in N\)

\(\Rightarrow a+b=6\)

Xét các TH:

a = 0 => b = 6

a = 1 => b = 5

a = 2 => b = 4

a = 3 => b = 3

a = 4 => b = 2

a = 5 => b = 1

a = 6 => b = 0

Từ đó dễ dàng tìm đc x, y

3 tháng 8 2017

Biên cưng. Minh Quân đây. 

24 tháng 1 2022

Điều kiện đề bài ⇒(2c)2=(a+c)(b+c)⇒(2c)2=(a+c)(b+c). Gọi d=gcd(a+c,b+c)d=gcd(a+c,b+c) thì do a−b=p∈Pa−b=p∈P nên d=1d=1hoặc d=pd=p

Nếu d=1d=1 thì a+c=x2,b+c=y2a+c=x2,b+c=y2 ( xy=2cxy=2c)

⇒p=(x−y)(x+y)⇒p=(x−y)(x+y). p=2p=2 thì vô lý. pp lẻ thì dễ thấy x=p+12=a−b+12x=p+12=a−b+12 và y=a−b−12y=a−b−12

⇒2c=xy=(a−b−1)(a−b+1)4⇒8c+1=(a−b)2⇒2c=xy=(a−b−1)(a−b+1)4⇒8c+1=(a−b)2 là scp

Nếu d=pd=p thì a+c=pm2,b+c=pn2a+c=pm2,b+c=pn2 ( 2c=pmn2c=pmn)

⇒(m−n)(m+n)=1→m=1,n=0⇒(m−n)(m+n)=1→m=1,n=0 (loại)