Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A= 3+3 ^2+...+3 ^100
=> 3A = 3^ 2+3^ 3+...+3 ^101
=> 3A-A= 3 ^2+3 ^3+...+3 ^101 - ( 3+3 ^2+...+3 ^100 )
=> 2A = 3 ^101 -3
=> A= 3^101 -3/2
c) 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101
vậy n = 101
a) Ta có : \(n+3⋮n+2\)
\(\Rightarrow\left(n+2\right)+1⋮n+2\)
Mà \(n+2⋮n+2\)
\(\Rightarrow1⋮n+2\)
\(\Rightarrow n+2\inƯ_{\left(1\right)}=\left\{\pm1\right\}\)
Ta có bảng sau :
n+2 | 1 | -1 |
n | -1 | -3 |
Mà \(n\in N\)\(\Rightarrow\)ko có giá trị nào của n có thể thỏa mãn đk trên :)
b) \(2n+9⋮n-3\)
\(\Rightarrow2\left(n-3\right)+15⋮n-3\)
Mà \(2\left(n-3\right)⋮n-3\)
\(\Rightarrow15⋮n-3\)
\(\Rightarrow n-3\inƯ_{\left(15\right)}=\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
Lại có : \(n\in N\)
Ta có bảng sau :
n-3 | 1 | -1 | 3 | -3 | 5 | -5 | 15 | -15 |
n | 4 (tm) | 2 (tm) | 6 (tm) | 0 (tm) | 8 (tm) | -2 (loại) | 18 (tm) | -12 ( loại ) |
Vậy \(n\in\left\{4;2;6;0;8;18\right\}\)
\(a,3A=3^2+3^3+...+3^{101}\\ \Rightarrow3A-A=3^2+3^3+...+3^{101}-3-3^2-...-3^{100}\\ \Rightarrow2A=3^{101}-3\\ \Rightarrow A=\dfrac{3^{101}-3}{2}\)
\(b,A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\\ A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\\ A=\left(1+3\right)\left(3+3^3+...+3^{99}\right)\\ A=4\left(3+3^3+...+3^{99}\right)⋮4\)
\(A=3+\left(3^2+3^3+...+3^{100}\right)\\ A=3+3^2\left(1+3+...+3^{100}\right)\\ A=3+9\left(1+3+...+3^{100}\right).chia.9.dư.3\\ \Rightarrow A⋮̸9\)
a) rút gọn a
a = 3 + 3^3 + 3^2 + .. + 3^100
3a = 3^2 + 3^3 + .. + 3^101
3a - a = (3^2 + 3^3 + .. + 3^101) - (3 + 3^2 + .. + 3^100)
2a = 3^301 - 3
a = 3^101 - 3/2
b) chứng minh a chia hết cho 4 và k chia hết cho 9
a = 3 + 3^2 + .. + 3^100
a = (3 + 3^2) + .. + (3^99 + 3^100)
a = 3 (1 + 3) + .. + 3^99 (1 + 3)
a = 3.4 + .. + 3^99.4
a = (3 + .. + 3^99).4 ⋮ 4
vì 9 ⋮̸4
=> a ⋮̸9
c) Giải: 11a + 2b chia hết cho 12 (đề cho) (1)
11a + 2b + a + 34b
= (11a + a) + ( 2b + 34b)
= 12a + 36b
Vì: 12a chia hết cho 12, 36 chia hết cho 12
Suy ra: 12a + 36b chia hết cho 12 (2)
Từ (1) và (2) suy ra : a + 34b chia hết cho 12
a) A = 3 + 32 + ... + 3100
A = ( 3 + 32 ) + ( 33 + 34 ) + ... + ( 399 + 3100 )
A = 3( 1 + 2 ) + 33( 1 + 2 ) + ... + 399( 1 + 2 )
A = 3( 1 + 33 + ... 399 ) ( 1 ).
b) Từ ( 1 ) ta có A chia hết cho 4 và 9.
c) 3A = 32 + 33 + ... + 3100 + 3101
3A - A = ( 32 + 33 + ... + 3100 + 3101 ) - ( 3 + 32 + ... + 3100 )
2A = 3101 - 3 \(\Rightarrow\)2A + 3 = 3101
\(\Rightarrow\)n = 101.
a) A= 3+32+...+3100
=> 3A = 32+33+...+3101
=> 3A-A= 32+33+...+3101 - ( 3+32+...+3100 )
=> 2A = 3101-3
=> A= \(\frac{3^{101}-3}{2}\)
b) Trong câu hỏi tương tự nhé
c) Theo câu a
A = \(\frac{3^{101}-3}{2}\)
=> 2A =3101-3
=> 2A+3=3101
=> n=101