K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2017

giup mih vs

Ví dụ: a = 6, b = 3. Ta có a chia hết cho 3 và b chia hết cho 3, nhưng (a+b) = 9 không chia hết cho 6.

Ví dụ: a = 9, b = 3. Ta có a chia hết cho 3 và b chia hết cho 3, nhưng (a+b) = 12 không chia hết cho 9.

Ví dụ: a = 2, b = 4. Ta có a chia hết cho 2 và b chia hết cho 4, nhưng (a+b) = 6 không chia hết cho 4.

Ví dụ: a = 2, b = 4. Ta có a chia hết cho 2 và b chia hết cho 4, nhưng (a+b) = 6 không chia hết cho 6.

Ví dụ: a = 6, b = 9. Ta có a chia hết cho 6 và b chia hết cho 9, nhưng (a+b) = 15 không chia hết cho 6.

Ví dụ: a = 6, b = 9. Ta có a chia hết cho 6 và b chia hết cho 9, nhưng (a+b) = 15 không chia hết cho 9.

Ví dụ: a = 2, b = 2. Ta có a chia hết cho 2 và b chia hết cho 2, nhưng (a+b) = 4 không chia hết cho 4.
😎 Ví dụ: a = 2, b = 2. Ta có a chia hết cho 2 và b chia hết cho 2, nhưng (a+b) = 4 không chia hết cho 6.

Ví dụ: a = 3, b = 9. Ta có a chia hết cho 3 và b chia hết cho 9, nhưng (a+b) = 12 không chia hết cho 9.

Ví dụ: a = 3, b = 9. Ta có a chia hết cho 3 và b chia hết cho 9, nhưng (a+b) = 12 không chia hết cho 6.

14 tháng 10 2015

a) 9 chia hết cho 3, 6 chia hết cho 3 nhưng 9+6=15 không chia hết cho 6

b) 12 chia hết cho, 3 chia hết cho 3 nhưng 12+3=15 không chia hết cho 9

13 tháng 5 2015

Ta có: 4n-5 chia hết cho 2n-1

Mà 2(2n-1) chia hết cho 2n-1 

    hay 4n-2 chia hết cho 2n-1

Nên 4n-5-(4n-2) chia hết cho 2n-1

  hay 4n-5-4n+2 chia hết cho 2n-1

       -3 chia hết cho 2n-1

=> 2n-1 thuộc Ư(-3)={1;-1;3;-3}

Ta có bảng:

2n-1     1       -1       3        -3

n         1        0        2       -1(loại vì n thuộc N)

Vậy n ={1;0;2}

13 tháng 5 2015

1. Đặt P là thương:
 \(P=\frac{4n-5}{2n-1}\)
\(\Leftrightarrow P=\frac{4n-2-3}{2n-1}\)
\(\Leftrightarrow P=2-\frac{3}{2n-1}\)
P thuộc Z khi và chỉ khi: 2n-1 là ước của 3.
TH1: \( 2n-1=-1\)
\(\Leftrightarrow n=0\)
TH2: \(2n-1=-3 \)
\(\Rightarrow n=-1\) (Loại do n tự nhiên)
TH3: \(2n-1=1 \)
\(\Rightarrow n=1\)
TH4: \(2n-1=3\)
\(\Rightarrow n=2\)

Vậy có ba giá trị của n tự nhiên là 0; 1; 2.

 

8 tháng 1 2017

a) 3 ko chia hết cho 9

các hạng tử còn lại thì chia hết cho 9

vậy S ko chia hết cho 9

b) có 1008 số hạng

có thể chia làm 1008:3=336(nhóm)

Chia 3 vì tổng chia hết cho 70

bạn tự làm tiếp nhé ko thì gửi tin mk giải tiếp cho

1 tháng 11 2021

\(a,3A=3^2+3^3+...+3^{101}\\ \Rightarrow3A-A=3^2+3^3+...+3^{101}-3-3^2-...-3^{100}\\ \Rightarrow2A=3^{101}-3\\ \Rightarrow A=\dfrac{3^{101}-3}{2}\)

\(b,A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{99}+3^{100}\right)\\ A=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{99}\left(1+3\right)\\ A=\left(1+3\right)\left(3+3^3+...+3^{99}\right)\\ A=4\left(3+3^3+...+3^{99}\right)⋮4\)

\(A=3+\left(3^2+3^3+...+3^{100}\right)\\ A=3+3^2\left(1+3+...+3^{100}\right)\\ A=3+9\left(1+3+...+3^{100}\right).chia.9.dư.3\\ \Rightarrow A⋮̸9\)

1 tháng 11 2021

a) rút gọn a

a = 3 + 3^3 + 3^2 + .. + 3^100

3a = 3^2 + 3^3 + .. + 3^101

3a - a = (3^2 + 3^3 + .. + 3^101) - (3 + 3^2 + .. + 3^100)

2a = 3^301 - 3

a = 3^101 - 3/2

b) chứng minh a chia hết cho 4 và k chia hết cho 9

a = 3 + 3^2 + .. + 3^100

a = (3 + 3^2) + .. + (3^99 + 3^100)

a = 3 (1 + 3) + .. + 3^99 (1 + 3)

a = 3.4 + .. + 3^99.4

a = (3 + .. + 3^99).4 ⋮ 4

vì 9 ⋮̸4

=> a ⋮̸9