K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2016

A=\(\frac{3}{1.4}+\frac{3}{4.7}+...........+\frac{3}{n.\left(n+3\right)}\)

A=\(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...............+\frac{1}{n}-\frac{1}{n+3}\)

A=\(1-\frac{1}{n+3}\)<1

Vậy A<1(đpcm)

9 tháng 4 2015

=>S= 1- 1/4 + 1/4 -1/7 + 1/7 - 1/10 +...+ 1/n - 1/(n+3)

=>S= 1- 1/(n+3)

=>S + 1/(n+3) = 1

=>S<1

8 tháng 5 2019

F=\(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{n\left(n+3\right)}\)

=>F=\(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+3}\)

=>F=1-\(\frac{1}{n+3}\)

mà (1-\(\frac{1}{n+3}\))<1

=>F<1

8 tháng 5 2019

Mình chưa hiểu dòng thứ hai bạn có thể giải thích cho mình ko

18 tháng 4 2015

ta có \(S=\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{n.\left(n+3\right)}\)

         \(\Rightarrow S=\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{n}-\frac{1}{n+3}\)

        \(S=\frac{1}{1}-\frac{1}{n+3}\)

        \(S=\frac{n+3}{n+3}-\frac{1}{n+3}=\frac{n+3-1}{n+3}=\frac{n+2}{n+3}

5 tháng 2 2017

Bao quynh Cao, giúp mk với !!!

Bài 1: Chứng minh rằng A<B<1 biết:

A = 3/1.4+3/4. …  . 3/n.(n+1).

B = 1/^2+1/3^2+1/4^2+ … + 1/n^2.

Bài 2: Cho S = 3/10+3/11+3/12+3/13+3/14. Chứng minh rằng 1<S<2. Từ đó suy ra S không phải là số tự nhiên.

Bài 3: Chứng minh rằng 3/5<S<4/5 với S = 1/31+1/32+1/33+…+1/60.

Các bạn nhớ giải đầy đủ và theo cách của Toán lớp 6 nâng cao nhé!

29 tháng 3 2016

= 1 - 1/4 +1/4 -1/7 + 1/7 -1/10+....+ 1/n-1/n+3

= 1- 1/n+3 (<1)

2 tháng 5 2017

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{n\left(n+3\right)}\)

\(\Rightarrow S=\dfrac{4-1}{1.4}+\dfrac{7-4}{4.7}+\dfrac{10-7}{7.10}+...+\dfrac{\left(n+3\right)-n}{n\left(n+3\right)}\)

\(\Rightarrow S=\dfrac{4}{1.4}-\dfrac{1}{1.4}+\dfrac{7}{4.7}-\dfrac{4}{4.7}+\dfrac{10}{7.10}-\dfrac{7}{7.10}+...+\dfrac{n+3}{n\left(n+3\right)}-\dfrac{n}{n\left(n+3\right)}\)

\(\Rightarrow S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{n}-\dfrac{1}{n+3}\)

\(\Rightarrow S=1-\dfrac{1}{n+3}< 1\Rightarrow S< 1\)

Vậy S < 1

14 tháng 3 2016

ta có S = 1-1/4 + 1/4 - 1/7 =....................................+1/n - 1/(n+1) = 1- 1/(n+1)

 mà n thuộc N* nên S<1

5 tháng 5 2020

Ta có 

\(S=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}\)

\(S=1-\frac{1}{n+3}< 1\)(vì n thuộc N*)

_Kudo_

5 tháng 5 2020

Cảm ơn bn

11 tháng 3 2021

sorry mình cũng đang muốn hỏi bài nay

7 tháng 4 2015

3/1.4+3/4.7+3/7.10+...+3/(n+1).n

=1-1/4+1/4-1/7+1/7-1/10+...+1/(n+1)-1/n

=1-1/n

Vì 1=1 nên 1-1/n <1

Vậy 3/1.4+3/4.7+3/7.10+...+3/(n+1)n<1

thảo nào, cái chỗ bạn sửa lại thấy sao sao ý, giờ thì đúng rồi