Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1 . nhá: cách làm: phân tích đề bài ta cho làm sao xuất hiện hiện các hằng đẳg thuức" \(\left(a-b\right)^3=b\left(a-b\right)^2\Leftrightarrow\frac{\left(a-b\right)^3}{\left(a-b\right)^2}=b\Rightarrow a=2b\)
từ đó chỗ nào có "a" thay vào P thì ta sẽ đc kq là 1
a3-4a2b-4b3+5ab2=0
==>(a-b)3 - b (a-b)2 =0
==>a-b = b ==> a=2b
thay a=2b vào biểu thức ta đc kết quả bằng 1
hình như mấy cái GP của Đinh Tuấn Việt là giả hay sao ấy nhỉ
Điệnthọi bé tý khi viết lời giải chẳng thẫy đề đâu. Vp (a+b)^3=bó tay
a3-4a2b=2b3-5ab2
=>(a3-3a2b+3ab2-b3)-(a2b+b3-2ab2)=0
=>(a-b)3-b(a2-2ab+b2)=0
=>(a-b)2(a-2b)=0
=> a-2b=0 (vì a#b#0 bạn thiếu điều kiện nha)
=>a=2b. Thay a=2b vào bt P ta đc P=1
\(\frac{a^2-2ab}{a^2b}.x=\frac{a^2b-4b^3}{3ab^2}\Leftrightarrow x=\frac{a^2b-4b^3}{3ab^2}:\frac{a^2-2ab}{a^2b}\Leftrightarrow x=\frac{b\left(a^2-4b^2\right)}{3ab^2}:\frac{a\left(a-2b\right)}{a^2b}\)
\(\Leftrightarrow x=\frac{\left(a-2b\right)\left(a+2b\right)}{3ab}.\frac{ab}{a-2b}\Leftrightarrow x=\frac{a+2b}{3}\)
Vậy \(x=\frac{a+2b}{3}\)
Có : \(\frac{a^2-2ab}{a^2b}.x=\frac{a^2b-4b^3}{3ab^2}\)
\(\Leftrightarrow x=\frac{a^2b-4b^2}{3ab^2}.\frac{a^2b}{a^2-2ab}\)
\(\Leftrightarrow x=\frac{a\left(a^2b-4b^2\right)}{3b\left(a^2-2ab\right)}=\frac{a^3b-4ab^2}{3a^{ }b-6ab^2}\)
\(\frac{a^2-2ab}{a^2b}.P=\frac{a^2b-4b^3}{3ab^2}\)
\(P=\frac{a^2b-4b^3}{3ab^2}:\frac{a^2-2ab}{a^2b}\)
\(P=\frac{a^2b-4b^3}{3ab^2}.\frac{a^2b}{a^2-2ab}\)
\(P=\frac{b\left(a^2-4b^2\right)}{3ab^2}.\frac{a^2b}{a\left(a-2b\right)}\)
\(P=\frac{b\left(a-2b\right)\left(a+2b\right)}{3ab^2}.\frac{a^2b}{a\left(a-2b\right)}\)
\(P=\frac{b\left(a+2b\right)}{3b}.\frac{a}{a}\)
\(P=\frac{a+2b}{3}\)
P=\(\frac{a^2b.b\left(a^2-4b^2\right)}{3ab^2.a\left(a-2b\right)}=\frac{a^2b^2\left(a-2b\right)\left(a+2b\right)}{3a^2b^2\left(a-2b\right)}\)
=> P=\(\frac{a+2b}{3}\)
G/t suy ra (a-2b)(a-b)2=0
suy ra a=2b hoặc a=b
thay vào được ....