K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

\(ĐKXĐ:\hept{\begin{cases}x\ne-2\\x\ne0\\x\ne2\end{cases}}\)

\(A=\frac{2x^2+10x+12}{x^3-4x}=0\)

\(\Leftrightarrow2x^2+10x+12=0\)

\(\Leftrightarrow2x^2+4x+6x+12=0\)

\(\Leftrightarrow2x\left(x+2\right)+6\left(x+2\right)=0\)

\(\Leftrightarrow\left(2x+6\right)\left(x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+6=0\\x+2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-3\\x=-2\end{cases}}\)

Vậy .........

27 tháng 7 2021

nhanh giùm mình được không

 

Bài 1: 

a) Ta có: \(P=1+\dfrac{3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{4}{x-2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\dfrac{4\left(x+2\right)-x-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{4x+8-x-x+2}\)

\(=1+3\cdot\dfrac{\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=1+\dfrac{3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{\left(x+3\right)\left(2x+10\right)+3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{2x^2+10x+6x+30+3x-6}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{2x^2+19x-6}{\left(x+3\right)\left(2x+10\right)}\)

20 tháng 12 2019

a) x = 2 7                         b) x = 2.

c) x = 2                          d) x = 1.

16 tháng 9 2018

11 tháng 10 2021

\(x^3-9x^2+26x-24\)

\(=x^3-4x^2-5x^2+20x+6x-24\)

\(=\left(x-4\right)\left(x^2-5x+6\right)\)

\(=\left(x-4\right)\left(x-2\right)\left(x-3\right)\)

8 tháng 7 2023

a) P(x)=4x2-6x+a; Q(x)=x-3

Lấy P(x):Q(x)=4x-6 dư a+30

Vậy để P(x)⋮Q(x) ⇒ a+30=0 ⇒ a=-30

b) P(x)=2x2+x+a; Q(x)=x+3

Lấy P(x):Q(x)=2x-7 dư a+21

Vậy để P(x)⋮Q(x) ⇒ a+21=0 ⇒ a=-21

c) P(x)=x3+ax2-4; Q(x)=x2+4x+4

Lấy P(x):Q(x)=x+a-4 dư -4(a-5)x+12

Vậy để P(x)⋮Q(x) ⇒ -4(a-5)x+12=0 ⇒ (a-5)x=3

⇒ a-5 ϵ {-1;1;-3;3} (a ϵ Z)

⇒ a ϵ {4;6;2;8}

d) P(x)=2x2+ax+1; Q(x)=x-3

Lấy P(x):Q(x)=2x+a+6 dư 3a+19

Vậy để P(x)⋮Q(x) ⇒ 3a+19=0 ⇒ a=-19/3

e) P(x)=ax5+5x4-9; Q(x)=x-1

Lấy P(x):Q(x)=ax4+(a-5)x3+(a-5)x2+(a-5)x+1 dư a-4

Vậy để P(x)⋮Q(x) ⇒ a-4=0 ⇒ a=4

f) P(x)=6x3-x2-23x+a; Q(x)=2x+3

Lấy P(x):Q(x)=3x2-5x-4 dư a+12

Vậy để P(x)⋮Q(x) ⇒ a+12=0 ⇒ a=-12

g) P(x)=x3-6x2+ax-6 Q(x)=x-2

Lấy P(x):Q(x)=x2-2x+a-4 dư 2(a-4)-6

Vậy để P(x)⋮Q(x) ⇒ 2(a-4)-6=0 ⇒ a=7

Bài h có a,b bạn xem lại đề

18 tháng 8 2023

\(x^6+2x^3+1=0\)

\(\Leftrightarrow\left(x^3\right)^2+2x^3+1=0\)

\(\Leftrightarrow\left(x^3+1\right)^2=0\)

\(\Leftrightarrow x^3=\left(-1\right)^3\)

\(\Leftrightarrow x=-1\)

___________

\(x\left(x-5\right)=4x-20\)

\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)

_____________

\(x^4-2x^2=8-4x^2\)

\(\Leftrightarrow x^2\left(x^2-2\right)+\left(4x^2-8\right)=0\)

\(\Leftrightarrow x^2\left(x^2-2\right)+4\left(x^2-2\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow x^2=2\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

_______________

\(\left(x^3-x^2\right)-4x^2+8x-4\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

24 tháng 6 2021

a)\(f\left(x\right)=2x^2-x-3+5=\left(x+1\right)\left(2x-3\right)+5\)

Để \(f\left(x\right)⋮g\left(x\right)\Leftrightarrow\left(x+1\right)\left(2x-3\right)+5⋮\left(x+1\right)\)

\(\Leftrightarrow5⋮\left(x+1\right)\)

mà \(x+1\in Z\Rightarrow x+1\in U\left(5\right)=\left\{-1;1;5;-5\right\}\)

\(\Leftrightarrow x\in\left\{-2;0;4;-6\right\}\)

Vậy...

b) \(f\left(x\right)=3x^2-4x+6=\left(3x^2-4x+1\right)+5=\left(3x-1\right)\left(x-1\right)+5\)

Để \(f\left(x\right)⋮g\left(x\right)\Leftrightarrow\left(3x-1\right)\left(x-1\right)+5⋮\left(3x-1\right)\)

\(\Leftrightarrow5⋮\left(3x-1\right)\) mà \(3x-1\in Z\Rightarrow3x-1\in U\left(5\right)=\left\{-1;1;5;-5\right\}\)

\(\Leftrightarrow x\in\left\{0;\dfrac{2}{3};2;-\dfrac{4}{3}\right\}\) mà x nguyên\(\Rightarrow x\in\left\{0;2\right\}\)

Vậy...

c)\(f\left(x\right)=\left(-2x^3-7x^2-5x+2\right)+3\)\(=\left(-2x^3-4x^2-3x^2-6x+x+2\right)+3\)\(=\left[-2x^2\left(x+2\right)-3x\left(x+2\right)+\left(x+2\right)\right]+3\)

\(=\left(x+2\right)\left(-2x^2-3x+1\right)+3\)

Làm tương tự như trên \(\Rightarrow x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Leftrightarrow x\in\left\{-5;-3;-1;1\right\}\)

Vậy...

d)\(f\left(x\right)=x^3-3x^2-4x+3=x\left(x^2-3x-4\right)+3=x\left(x+1\right)\left(x-4\right)+3\)

Làm tương tự như trên \(\Rightarrow x+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

\(\Rightarrow x\in\left\{-4;-2;0;2\right\}\)

Vậy...