\(a^2+\frac{1}{a^2}=7\).Tính \(a^3+\frac{1}{a^3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2019

Ta có: 

\(\left(a+\frac{1}{a}\right)^2=a^2+\frac{1}{a^2}+2=7+2=9\)

=> \(a+\frac{1}{a}=\pm3\)

+) Với \(a+\frac{1}{a}=3\)

Xét : \(\left(a+\frac{1}{a}\right)\left(a^2+\frac{1}{a^2}\right)=a^3+\frac{1}{a^3}+a+\frac{1}{a}\)

=> \(3.7=a^3+\frac{1}{a^3}+3\Leftrightarrow a^3+\frac{1}{a^3}=18\)

\(\left(a^2+\frac{1}{a^2}\right)\left(a^2+\frac{1}{a^2}\right)=a^4+\frac{1}{a^4}+2\)

\(\Rightarrow7.7=a^4+\frac{1}{a^4}+2\Rightarrow a^4+\frac{1}{a^4}=47\)

\(\left(a^4+\frac{1}{a^4}\right)\left(a+\frac{1}{a}\right)=a^5+\frac{1}{a^5}+a^3+\frac{1}{a^3}\)

=> \(47.3=a^5+\frac{1}{a^5}+18\Rightarrow a^5+\frac{1}{a^5}=123\)

Trường hợp còn lại em làm tương tự

31 tháng 5 2016

1.

a.

\(\frac{1}{3}+\left(\frac{1}{5}-\frac{1}{7}\right)\)

\(=\frac{1}{3}+\frac{1}{5}-\frac{1}{7}\)

\(=\frac{35-21-15}{105}\)

\(=-\frac{1}{105}\)

b.

\(\frac{3}{5}-\left(\frac{3}{4}-\frac{1}{2}\right)\)

\(=\frac{3}{5}-\frac{3}{4}+\frac{1}{2}\)

\(=\frac{12-15+10}{20}\)

\(=\frac{7}{20}\)

c.

\(\frac{4}{7}-\left(\frac{2}{5}+\frac{1}{3}\right)\)

\(=\frac{4}{7}-\frac{2}{5}-\frac{1}{3}\)

\(=\frac{60-42-35}{105}\)

\(=-\frac{17}{105}\)

2.

a.

\(S=-\frac{1}{1\times2}-\frac{1}{2\times3}-\frac{1}{3\times4}-...-\frac{1}{\left(n-1\right)\times n}\)

\(S=-\left(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{\left(n-1\right)\times n}\right)\)

\(S=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(S=-\left(1-\frac{1}{n}\right)\)

\(S=-1+\frac{1}{n}\)

b.

\(S=-\frac{4}{1\times5}-\frac{4}{5\times9}-\frac{4}{9\times13}-...-\frac{4}{\left(n-4\right)\times n}\)

\(S=-\left(\frac{4}{1\times5}+\frac{4}{5\times9}+\frac{4}{9\times13}+...+\frac{4}{\left(n-4\right)\times n}\right)\)

\(S=-\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{n-4}-\frac{1}{n}\right)\)

\(S=-\left(1-\frac{1}{n}\right)\)

\(S=-1+\frac{1}{n}\)

Chúc bạn học tốtok

 

2 tháng 2 2018

Có : a/ab+a+1 = a/ab+a+abc = 1/b+1+bc = 1/bc+b+1

        c/ca+c+1 = bc/abc+bc+b = b/1+bc+b = b/bc+b+1

=> A = 1+bc+b/bc+b+1 = 1

Tk mk nha

2 tháng 2 2018

BÀI 1:

\(\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{a\left(bc+b+1\right)}+\frac{abc}{ab\left(ca+c+1\right)}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a} +\frac{abc}{a^2bc+abc+ab}\)        

\(=\frac{a}{ab+a+1}+\frac{ab}{ab+a+1}+\frac{1}{ab+a+1}\)       (thay   abc = 1)

\(=\frac{a+ab+1}{a+ab+1}=1\)

5 tháng 7 2017

3. S= -1/6 + -1/20 + 1/10 + 1/6

=0

4. A= -1 -1 -1 -1 -.... -1 [ có (50-2): 2 +1 = 25 số -1)

=-25

15 tháng 3 2017

tại sao cậu toàn cho bài khó thế tớ chịu

2 tháng 1 2019

A) \(A=\left(-\frac{3}{4}+\frac{2}{3}\right):\frac{5}{11}+\left(-\frac{1}{4}+\frac{1}{3}\right):\frac{5}{11}\)

\(A=-11.\frac{1}{12}:5+\frac{1}{3}-\frac{1}{4}:\frac{5}{11}\)

\(A=-\frac{11.\frac{1}{12}}{5}+\frac{11.\frac{1}{12}}{5}\)

\(\Rightarrow A=0\)

b) \(B=\left(-3\right)^2.\left(\frac{3}{4}-0,25\right)-\left(3\frac{1}{2}-1\frac{1}{2}\right)\)

\(B=\left(-3\right)^2.\left(\frac{3}{4}-0,25\right)-\left(\frac{7}{2}-\frac{4}{2}\right)\)

\(B=\left(-3\right)^2.\left(\frac{3}{4}-0,25\right)-2\)

\(B=3^2.\left(\frac{3}{4}-0,25\right)-2\)

\(B=4,5-2\)

\(\Rightarrow B=2\)

2 tháng 1 2019

Lộn nha :v ở phần b) ấy, bạn sửa 4,5 - 2 = 2 thành 4,5 - 2 = 2,5 hộ mình nha