Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khá dễ!
Ta có: \(\left(a+b\right)\left(a^3+b^3\right)\le2\left(a^4+b^4\right)\)
<=> \(a^4+a^3b+ab^3+b^4\le a^4+b^4+a^4+b^4\)
<=> \(a^3b+ab^3\le a^4+b^4\)
<=> \(a^4-a^3b+b^4-ab^3\ge0\)
<=> \(a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)
<=> \(\left(a-b\right)\left(a^3-b^3\right)\ge0\)
<=> \(\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (Luôn đúng)
=> đpcm
Ta có BDT luôn đúng \(\left(a-b\right)^2\ge0\) \(\Leftrightarrow a^2+b^2\ge2ab\) \(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\). Do \(a^2+b^2\le2\) nên \(2\left(a^2+b^2\right)\le4\).
Do đó \(\left(a+b\right)^2\le4\) \(\Leftrightarrow-2\le a+b\le2\), suy ra đpcm. ĐTXR \(\Leftrightarrow a=b=1\)
Bài 3:
\(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge\dfrac{4}{xy}\)
\(\Leftrightarrow x^2y^2\left(\dfrac{1}{\left(x-y\right)^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\ge\dfrac{4}{xy}.x^2y^2\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2+y^2\ge4xy\)
\(\Leftrightarrow\dfrac{x^2y^2}{\left(x-y\right)^2}+x^2-2xy+y^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2+\left(x-y\right)^2\ge2xy\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}\right)^2-2xy+\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\left(\dfrac{xy}{x-y}-x+y\right)^2=0\) (luôn đúng)
\(\forall\)a,b,c >0, 0<m<1 ta có:
\(\left(a-b\right)^2\le m\left(a-b\right)^2\)
Dấu "=" xảy ra <=> a=b
Áp dụng vào bài toán: a,b,c>0 và a+b+c=1
=> 0<a,b,c<1. Nên: a(a-b)2+b(b-c)2+c(c-a)2 =< (a-b)2+(b-c)2+(c-a)2
=> a(a-b)2+b(b-c)2+c(c-a)2+6(ab+bc+ca) =< 2(a+b+c)2=2
Dấu "=" xảy ra <=> a=b=c=\(\frac{1}{3}\)
vì a2 và b2 là 2 SCP nên chúng là STN
thử các trường hợp chỉ có 1 và 1 thỏa mãn => a và b đều = 1
=> a + b < 2(a + b)3 vì 2 < 16 (đpcm)