K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

\(\text{Ta có:}\)

\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3=\)

\(\left(a-1\right)^3+\left(b-2\right)^3+\left(c-3\right)^3-3\left(a-1\right)\left(b-2\right)\left(c-3\right)+3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

\(\Leftrightarrow\left(a+b+c-6\right)\left(....\right)+3\left(a-1\right)\left(b-2\right)\left(c-3\right)=0\)

\(\Leftrightarrow a=1\text{ hoặc }b=2\text{ hoặc }c=3\)

còn lại ko tính đc bạn ktra lại đề

9 tháng 2 2020

mk nhầm , chiều mk lm tiếp

30 tháng 10 2016

lớp 6 mà

30 tháng 10 2016

lớp 9 đó

14 tháng 6 2016

Bài 2:

Chứng minh bất đẳng thức Mincopxki \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\text{ }\left(1\right)\)

(bình phương vài lần + biến đổi tương đương)

\(S\ge\sqrt{\left(a+b\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2}+\sqrt{c^2+\frac{1}{c^2}}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)

\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{9}{a+b+c}\right)^2}\)

\(t=\left(a+b+c\right)^2\le\left(\frac{3}{2}\right)^2=\frac{9}{4}\)

\(S\ge\sqrt{t+\frac{81}{t}}=\sqrt{t+\frac{81}{16t}+\frac{1215}{16t}}\ge\sqrt{2\sqrt{t.\frac{81}{16t}}+\frac{1215}{16.\frac{9}{4}}}=\frac{\sqrt{153}}{2}\)

Dấu bằng xảy ra khi \(a=b=c=\frac{1}{2}.\)

15 tháng 6 2016

cau 1 su dung bdt tre bu sep la ra

30 tháng 3 2020

Ko làm mất tính tổng quát, giả sử a >= b >= c.

Ta có: \(\frac{a^{2016}}{b+c-a}\) + \(\frac{b^{2016}}{c+a-b}\) + \(\frac{c^{2016}}{a+b-c}\)- ( a2015 + b2015 + c2015 )                      \(\left(1\right)\)

\(\left(\frac{a^{2016}}{b+c-a}-a^{2015}\right)\)\(\left(\frac{b^{2016}}{c+a-b}-b^{2015}\right)\)\(\left(\frac{c^{2016}}{a+b-c}-c^{2015}\right)\)

\(\frac{2a^{2016}-a^{2015}\left(b+c\right)}{b+c-a}\)\(\frac{2b^{2016}-b^{2015}\left(a+c\right)}{c+a-b}\)\(\frac{2c^{2016}-c^{2015}\left(a+b\right)}{a+b-c}\)

\(\frac{a^{2015}\left(2a-b-c\right)}{b+c-a}\)\(\frac{b^{2015}\left(2b-a-c\right)}{c+a-b}\)\(\frac{c^{2015}\left(2c-a-b\right)}{a+b-c}\)

- Theo bđt tam giác và điều giả sử, cm được biểu thức vừa thu được >= 0 và dấu = xra <=> a = b = c.

Do đó, (1) lớn hơn = 0 => ta có đpcm.

Vậy..........

- Tớ ko nghĩ bài làm của tớ đúng đâu. Nếu sai mong bạn thông cảm!