Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng bđt Cô-si: \(\frac{a}{bc}+\frac{b}{ac}\ge2\sqrt{\frac{a}{bc}.\frac{b}{ac}}=\frac{2}{c}\)
\(\frac{b}{ac}+\frac{c}{ab}\ge2\sqrt{\frac{b}{ac}.\frac{c}{ab}}=\frac{1}{a}\)
\(\frac{c}{ab}+\frac{a}{bc}\ge2\sqrt{\frac{c}{ab}.\frac{a}{bc}}=\frac{1}{b}\)
cộng vế với vế ta được \(2\left(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\right)\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
=>\(A=\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{3}{2}\)
Dấu "=" xảy ra khi a=b=c=2
Vậy minA=3/2 khi a=b=c=2
![](https://rs.olm.vn/images/avt/0.png?1311)
theo giả thiết => a+b+c=3abc
ta có:
\(P>=\frac{\left(b\sqrt{a}+a\sqrt{c}+c\sqrt{b}\right)^2}{2\left(a+b+c\right)}\)(theo cauchy schawarz)\(=\frac{\left(b\sqrt{a}+c\sqrt{b}+a\sqrt{c}\right)^2}{6abc}\)
=>\(P>=\frac{\left(3\sqrt[3]{abc\sqrt{abc}}\right)^2}{6abc}\)(cô si)=3/2
dấu = xảy ra khi và chỉ khi a=b=c=\(\frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Có 2 cáchm cách 1 dài nên làm cách 2 cho ngắn
Áp dụng BĐT AM-GM ta có
\(\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ac}{c}\right)^2\ge3\left(\frac{bc}{a}\cdot\frac{ca}{b}+\frac{bc}{a}\cdot\frac{ab}{c}+\frac{ca}{b}\cdot\frac{ab}{c}\right)=3\left(a^2+b^2+c^2\right)=3\)
\(\Rightarrow P\ge\sqrt{3}\). Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{2a^2+ab+2b^2}=\sqrt{\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\frac{5}{4}\left(a+b\right)\)
Tương tự cộng vế theo vế thì
\(M\ge\frac{5}{4}\left(2a+2b+2c\right)=\frac{5}{2}\left(a+b+c\right)=\frac{5}{2}\cdot2019\)
Dấu "=" xảy ra tại \(a=b=c=\frac{2019}{3}\)
bài 4 có trên mạng nha chị.tí e làm cách khác
bài 5 chị tham khảo bđt min cop ski r dùng svác là ra ạ.giờ e coi đá bóng,coi xong nghĩ tiếp ạ.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có \(\frac{a}{a+1}=\left(1-\frac{b}{1+b}\right)+\left(1-\frac{c}{1+c}\right)=\frac{1}{1+b}+\frac{1}{1+c}\ge2\sqrt{\frac{1}{\left(1+b\right)\left(1+c\right)}}\left(1\right)\)
CMTT \(\frac{b}{b+1}\ge2\sqrt{\frac{1}{\left(1+a\right)\left(1+c\right)}}\left(2\right)\)
\(\frac{c}{c+1}\ge2\sqrt{\frac{1}{\left(a+1\right)\left(b+1\right)}}\left(3\right)\)
Nhân các vế của (1);(2);(3)
=> \(abc\ge8\)
=> \(ab+bc+ac\ge3\sqrt[3]{a^2b^2c^2}\ge12\)
=> \(Min\left(ab+bc+ac\right)=12\)khi \(a=b=c=2\)
Theo gt ta có:
\(\frac{a}{a+1}=1-\frac{b}{b+1}+1-\frac{c}{c+1}=\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{2}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)
Cmtt ta có: \(\frac{b}{b+1}\ge\frac{2}{\sqrt{\left(a+1\right)\left(c+1\right)}}\)
Nhân theo vế của BĐT trên ta được
\(\frac{ab}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{\left(c+1\right)\sqrt{\left(a+1\right)\left(b+1\right)}}\)
\(\Leftrightarrow ab\ge\frac{4\sqrt{\left(a+1\right)\left(b+1\right)}}{c+1}\)
Tương tự cũng có: \(\hept{\begin{cases}bc\ge\frac{4\sqrt{\left(b+1\right)\left(c+1\right)}}{a+1}\\ca\ge\frac{4\sqrt{\left(c+1\right)\left(a+1\right)}}{b+1}\end{cases}}\)
Cộng lại theo vế 3 BĐT trên và sủ dụng AM-GM ta được
\(P=ab+bc+ca\ge12\)
Dấu "=" xảy ra <=> a=b=c=2
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
\(P=\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\)
\(P^2=\frac{b^2c^2}{a^2}+\frac{a^2c^2}{b^2}+\frac{a^2b^2}{c^2}+2a^2+2b^2+2c^2\)
Áp dụng BĐT Cô-si :
\(P^2=\frac{1}{2}\cdot\left(\frac{b^2c^2}{a^2}+\frac{c^2a^2}{b^2}+\frac{b^2c^2}{a^2}+\frac{a^2b^2}{c^2}+\frac{a^2b^2}{c^2}+\frac{c^2a^2}{b^2}\right)+2\left(a^2+b^2+c^2\right)\)
\(\ge\frac{1}{2}\cdot2\cdot\left(a^2+b^2+c^2\right)+2\cdot\left(a^2+b^2+c^2\right)\)
\(=3\cdot\left(a^2+b^2+c^2\right)=3\)
Do đó \(P\ge\sqrt{3}\)
Dấu đẳng thức xảy ra \(\Leftrightarrow a=b=c=\frac{1}{\sqrt{3}}\)
2. \(x^2+5x+9=\left(x+5\right)\sqrt{x^2+9}\)
Đặt \(\sqrt{x^2+9}=a>0\)
\(\Leftrightarrow a^2=x^2+9\)
\(pt\Leftrightarrow a^2+5x=\left(x+5\right)\cdot a\)
\(\Leftrightarrow a^2+5x-ax-5a=0\)
\(\Leftrightarrow a\left(a-x\right)-5\left(a-x\right)=0\)
\(\Leftrightarrow\left(a-x\right)\left(a-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=x\\a=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+9}=x\\\sqrt{x^2+9}=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+9=x^2\\x^2+9=25\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\varnothing\\x\in\left\{\pm4\right\}\end{matrix}\right.\)
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
Sử dụng BĐT \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
Ta có:
\(P^2=\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\right)^2\ge3\left(\frac{ab.bc}{ac}+\frac{ab.ac}{bc}+\frac{bc.ac}{ab}\right)=3\)
\(\Rightarrow P\ge\sqrt{3}\)
\(P_{min}=\sqrt{3}\) khi \(a=b=c=\frac{1}{\sqrt{3}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
We have \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=3\)
\(\Rightarrow\frac{a+b+c}{abc}=3\Rightarrow a+b+c=3abc\)
Apply inequality Cauchy, we have:
\(\text{Σ}_{cyc}\frac{ab^2}{a+b}\ge3\sqrt[3]{\frac{ab^2}{a+b}.\frac{bc^2}{b+c}.\frac{ca^2}{c+a}}\)
\(=\frac{3abc}{\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}\ge\frac{a+b+c}{\frac{a+b+b+c+c+a}{3}}=\frac{3}{2}\)
"=" occurs when a = b = c = 1
\(P>=\frac{\left(b\sqrt{a}+c\sqrt{b}+a\sqrt{c}\right)^2}{2\left(a+b+c\right)}\)(bdt svac-xơ)(1)
ta có \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=3\)
=>\(a+b+c=3abc\)(2)
từ 1 và 2 =>\(P>=\frac{\left(b\sqrt{a}+b\sqrt{c}+a\sqrt{c}\right)^2}{6abc}\)
=>\(P>=\frac{\left(3\sqrt[3]{abc\sqrt{abc}}\right)^2}{6abc}\) (bdt cô si)
=>\(P>=\frac{9abc}{6abc}=\frac{3}{2}\)
xảy ra dấu = khi và chỉ khi a=b=c=1