K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2018

mk chỉnh lại đề nhé: 

cho \(a^3+b^3+c^3=3abc\)

CMR: \(a=b=c\)hoặc   \(a+b+c=0\)

      BÀI LÀM

\(a^3+b^3+c^3=3abc\)

<=>  \(a^3+b^3+c^3-3abc=0\)

<=> \(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

<=> \(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

<=> \(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

<=>  \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)

Xét:  \(a^2+b^2+c^2-ab-bc-ca=0\)

<=>  \(2\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

<=>  \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

<=>  \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)

<=>  \(a=b=c\)

=> đpcm

13 tháng 3 2018

a)

<=>\(4x^2+4xy+y^2< 5x^2+5y^2\Leftrightarrow x^2+4y^2-4xy=\left(x-2y\right)^2>0\)

=> đề sai

b)

(x+1)[(x+1)-x) >0

(x+1)[(x+1)-x) >0 <=> x+1>0 => đề sai

c) (a-b)^2 <=a^2 +b^2

<=> a^2 -2ab +b^2 <=a^2 +b^2 <=> -2ab<=0 => đề sai

11 tháng 2 2019

Cái này là BĐT Bunhiacopxki đó bạn haha

\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

\(\Leftrightarrow a^2x^2+b^2y^2+b^2x^2+a^2y^2\ge a^2x^2+b^2y^2+2axby\)

\(\Leftrightarrow b^2x^2+a^2y^2\ge2axby\)

\(\Leftrightarrow\left(bx-ay\right)^2\ge0\) ( luôn đúng )

\(\Rightarrowđpcm\)

11 tháng 2 2019

\(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2\ge a^2x^2+b^2y^2+2axby\)

\(\Leftrightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2-a^2x^2-b^2y^2-2axby\ge0\)

\(\Leftrightarrow a^2y^2+b^2y^2-2axby\ge0\)

\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) ( bất đẳng thức luôn đúng )

Vậy ................

16 tháng 9 2017

\(a^4+1-a\left(a^2+1\right)=a^4+1-a^3-a=\left(a^4-a\right)-\left(a^3-1\right)\)

\(=a\left(a^3-1\right)-\left(a^3-1\right)=\left(a-1\right)\left(a^3-1\right)\)

\(=\left(a-1\right)\left(a-1\right)\left(a^2+a+1\right)=\left(a-1\right)^2\left[\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\right]\ge0\forall a\)(đpcm)

17 tháng 5 2016

     (a+b+c)2\(\ge\) 3(ab+bc+ca) (*)

=>a2+b2+c2+2ab+2bc+2ca\(\ge\) 3ab+3bc+3ca

=>a2+b2+c2\(\ge\) ab+bc+ca

nhân 2 vào cho 2 vế ta được:

2a2+2b2+2c2\(\ge\) 2ab+2bc+2ca

=> (a+b)2+(b+c)2+(c+a)2\(\ge\) 0 (đúng)

=> (*) đúng

12 tháng 7 2023

Mày nhìn cái chóa j

9 tháng 1 2019

Với mọi a,b ta có : ( a - b )2 \(\ge\)

=> a2 + b2 \(\ge\)2ab => 2 . ( a2 + b2 ) \(\ge\)( a + b )2 = 1

=> a2 + b2 \(\ge\)\(\frac{1}{2}\)

Dấu " = " xảy ra <=> a = b = \(\frac{1}{2}\)

4 tháng 10 2016

\(a^2+b^2+1=a+b+ab\Leftrightarrow2a^2+2b^2+2=2a+2b+2ab\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2a+1\right)+\left(b^2-2b+1\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}a-b=0\\a-1=0\\b-1=0\end{cases}\Leftrightarrow}a=b=1\)

1 tháng 10 2017

a^2 + b^2 > hoặc = 25 <=> a^2 > hoặc = 25 - b^2

Khi a > hoặc = 3 thì 3^2 > hoặc = 25 - b^2

<=> b > hoặc = 4

=> a + b > hoặc = 7

đpcm