Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1:a2+b2+c2=ab+bc+ac tương đương 2(a2+b2+c2) - 2(ab+bc+ac) =0
suy ra 2a2 +2b2 +2c2 -2ab-2bc-2ac=0
suy ra (a2 -2ab+b2) +(b2-2bc+c2)+(a2-2ac+c2)=0
suy ra (a-b)2+(b-c)2+(a-c)2=0 suy ra (a-b)2=0 tương đương a-b=0 suy ra a=b (1)
(b-c)2=0 tương đương b-c=0 suy ra b=c (2)
(a-c)2 =0 tương đương a-c=0 suy ra b=c (3)
từ (1);(2);(3)suy ra a=b=c.Mà a=b=c=9 suy ra a=b=c=3(đpcm)
bai 1 : ve trai : a2 + b2 + c2 = a.a + b.b + c.c = (a.b) + (b.c) +(c.a) = ab + bc +ca = ve phai
ma a+b+c=9 suy ra : 3+3+3=9 suy ra a ;b;c deu bang 3
vi ve trai = ve phai ma a ;b ;c =3 vay dang thuc duoc chung minh
a. \(a^3+a^2c-abc+b^2c+b^3\)
<=> \(\left(a^3+b^3\right)+c\left(a^2-ab+b^2\right)\)
<=> (\(\left(a+b\right)\left(a^2-ab+b^2\right)+c\left(a^2-ab+b^2\right)\)
<=> \(\left(a+b+c\right)\left(a^2-ab+b^2\right)\)
vì a+b+c =0 => đpcm
b. 2(a+1)(b+1)=(a+b)(a+b+2)
<=> \(2\left(ab+a+b+1\right)=\)\(a^2+ab+2a+ab+b^2+2b\)
<=> \(2ab+2a+2b+2=a^2ab+2a+ab+b^2+2b\)
<=> \(a^2+b^2=2\)=> đpcm
-Áp dụng BĐT Caushy Schwarz ta có:
\(\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\ge\dfrac{\left(a+b+c\right)^2}{b+c+c+a+a+b}=\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}\)-Dấu "=" xảy ra khi \(a=b=c>0\)
a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
\(\Leftrightarrow a=b=c=1\)
b) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2+b^2-2ab\right)+\left(b^2+c^2-2bc\right)+\left(c^2+a^2-2ac\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)
Bạn tham khảo thêm tại đây:
Câu hỏi của Cậu Bé Ngu Ngơ - Toán lớp 8 | Học trực tuyến
Lời giải:
$\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1$
$\Leftrightarrow (a+b+c)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c$
$\Leftrightarrow \frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+\frac{ab+bc}{c+a}+\frac{ac+bc}{a+b}+\frac{ab+ac}{b+c}=a+b+c$
$\Leftrightarrow \frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+b+c+a=a+b+c$
$\Leftrightarrow \frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0$
Ta có đpcm.
áp dụng bất đẳng thức côsi cho hai số dương
\(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{b^2}\cdot\frac{b^2}{c^2}}=2\frac{a}{c}\)
\(\frac{b^2}{c^2}+\frac{c^2}{a^2}\ge2\frac{b}{a}\)
\(\frac{c^2}{a^2}+\frac{a^2}{b^2}\ge2\frac{c}{b}\)
cộng vế theo vế
\(2\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\)
dấu "=" xảy ra khi \(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{c^2}{a^2}\Leftrightarrow a=b=c\)