\(a^2+ab+b^2=3\). Tìm GTNN và GTLN của ab

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
11 tháng 8 2021

\(3=a^2+ab+b^2=\left(a+b\right)^2-ab\Leftrightarrow ab=\left(a+b\right)^2-3\ge-3\)

Dấu \(=\)khi \(\orbr{\begin{cases}x=\sqrt{3},y=-\sqrt{3}\\x=-\sqrt{3},y=\sqrt{3}\end{cases}}\).

\(3=a^2+ab+b^2=\left(a-b\right)^2+3ab\Leftrightarrow ab=\frac{3-\left(a-b\right)^2}{3}\le1\)

Dấu \(=\)khi \(\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}\).

20 tháng 4 2016

Ta có \(Q=\frac{a^2-ab+b^2}{a^2+ab+b^2}=\frac{3a^2-3ab+3b^2}{3a^2+3ab+b^2}=\frac{a^2+ab+b^2+2a^2-4ab+2b^2}{3a^2+3ab+3b^2}\) \(=\frac{1}{3}+\frac{2\left(a-b\right)^2}{3a^2+3ab+3b^2}\)

. Xét \(a^2+ab+b^2\) \(=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}>0\) 

. Suy ra \(\frac{1}{3}+\frac{2\left(a-b\right)^2}{3a^2+3ab+3b^2}\ge\frac{1}{3}\) => \(MinQ=\frac{1}{3}\) khi \(a=b\)

\(Q=\frac{a^2-ab+b^2}{a^2+ab+b^2}=\frac{3a^2+3ab+3b^2-2a^2-4ab-2b^2}{a^2+ab+b^2}\) \(=3-\frac{2\left(a+b\right)^2}{a^2+ab+b^2}\le3\)

. Suy ra \(MaxQ=3\) khi \(a=-b\)

. Kết luận ^^

NV
19 tháng 6 2019

\(\frac{P}{3}=\frac{a^2-ab-3b^2}{3}=\frac{a^2-ab-3b^2}{a^2+ab+b^2}\)

Nếu \(b=0\Rightarrow P=3\)

Nếu \(b\ne0\) chia cả tử và mẫu cho \(b^2\) ta được: \(\frac{P}{3}=\frac{\left(\frac{a}{b}\right)^2-\frac{a}{b}-3}{\left(\frac{a}{b}\right)^2+\frac{a}{b}+1}\)

Đặt \(\frac{a}{b}=x\Rightarrow\frac{P}{3}=\frac{x^2-x-3}{x^2+x+1}\)

\(\Leftrightarrow Px^2+Px+P=3x^2-3x-9\)

\(\Leftrightarrow\left(P-3\right)x^2+\left(P+3\right)x+P+9=0\)

Với \(P\ne3\) ta có

\(\Delta=\left(P+3\right)^2-4\left(P-3\right)\left(P+9\right)\ge0\)

\(\Leftrightarrow-3P^2-30P+117\ge0\)

\(\Rightarrow-13\le P\le3\)

\(\Rightarrow P_{max}=3\) khi \(b=0\)

\(P_{min}=-13\) khi \(x=-\frac{5}{16}\Rightarrow a=-\frac{5}{16}b\)

4 tháng 5 2017

|5y+3| + 4y = 15 - |2-3y|

<=> |5y+3| + |2 - 3y| = 15 - 4y (1)

Lập bảng xét dấu |5y+3| và |2-3y|

y                  -3/5              2/3

5y+3      -               +                  +

2-3y       -              -                    +

Th1: y < -3/5

  (1) => -(5y +3) -(2 - 3y) = 15 - 4y

      <=> -5y -3 -2 + 3y = 15 - 4y

      <=>-5y + 3y + 4y =15 + 3 + 2

        <=> 2y     =20

        <=> y  =10 ( không TM)

Th2                    -3/5 ≤   x  ≤ 2/3

(1) => 5y + 3 - (2-3y)=15 - 4y

     <=> 5y + 3 + 3y -2 = 15 -4y

      <=> 5y + 3y + 4y = 15 - 3 -2

       <=> 12y =10

         <=> y = 5/6 (không TM)

Th3: x > 2/3

  (1) =>. 5y + 3 + 2 - 3y = 15 - 4y

       <=> 5y - 3y + 4y = 15-3-2

        <=> 6y            = 10

          <=> y          =  5/3 (TM)

Vậy phương trình có tập ngiệm là  S = { 5/3}

20 tháng 9 2019

|5y+3| + 4y = 15 - |2-3y|

<=> |5y+3| + |2 - 3y| = 15 - 4y (1)

Lập bảng xét dấu |5y+3| và |2-3y|

y                  -3/5              2/3

5y+3      -               +                  +

2-3y       -              -                    +

Th1: y < -3/5

  (1) => -(5y +3) -(2 - 3y) = 15 - 4y

      <=> -5y -3 -2 + 3y = 15 - 4y

      <=>-5y + 3y + 4y =15 + 3 + 2

        <=> 2y     =20

        <=> y  =10 ( không TM)

Th2                    -3/5 ≤   x  ≤ 2/3

(1) => 5y + 3 - (2-3y)=15 - 4y

     <=> 5y + 3 + 3y -2 = 15 -4y

      <=> 5y + 3y + 4y = 15 - 3 -2

       <=> 12y =10

         <=> y = 5/6 (không TM)

Th3: x > 2/3

  (1) =>. 5y + 3 + 2 - 3y = 15 - 4y

       <=> 5y - 3y + 4y = 15-3-2

        <=> 6y            = 10

          <=> y          =  5/3 (TM)

Vậy phương trình có tập ngiệm là  S = { 5/3}

học tốt

2 tháng 12 2018

1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)

vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)

dấu = xảy ra khi x-2018=0

=> x=2018

Vậy Min A=\(\frac{2017}{2017}\)khi x=2018

2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)

\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)

để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất

mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)

dấu = xảy ra khi \(x+\frac{3}{2}=0\)

=> x=\(-\frac{3}{2}\)

Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)

3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)

để M lớn nhất => x2+4 nhỏ nhất

mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)

dấu = xảy ra khi x=0

=> x=0

Vậy Max M\(=\frac{7}{2}\)khi x=0

ps: bài này khá dài, sai sót bỏ qua =))

2 tháng 12 2018

ê viết lộn dòng này :v

\(MinA=\frac{2017}{2018}\)nha 

18 tháng 11 2017

Sửa đề: Cho a , b ,c dương thỏa mãn: a + b + c = 6abc .   Phần dưới vẫn như vậy.

Ta có thể viết:

\(Q=\frac{bc}{a^3\left(c+2b\right)}+\frac{ca}{b^3\left(a+2c\right)}+\frac{ab}{c^3\left(b+2a\right)}\Leftrightarrow Q=\frac{1}{a^3}+\frac{bc}{c+2b}+\frac{1}{b^3}+\frac{ca}{a+2c}+\frac{1}{c^3}+\frac{ab}{b+2a}\)

\(\Rightarrow a=b=c\)

\(\Leftrightarrow Q=\frac{1}{a^3b^3c^3}+\frac{bc}{c+2b}+\frac{ca}{a+2c}+\frac{ab}{b+2a}\Leftrightarrow\frac{1}{\left[\left(a\right)\left(b\right)\left(c\right)\right]^9}+\frac{bc}{c+2b}+\frac{ca}{a+2c}+\frac{ab}{b+2a}\)

Do đó:

\(Q^9=\frac{1}{\left[\left(a\right)\left(b\right)\left(c\right)\right]}\Rightarrow Q^9\ge0\) , mà a , b ,c thỏa mãn a + b + c = 6abc

Vậy GTNN của Q là:    6000 : 9 = 666,6

Vậy dấu "=" xảy ra khi và chỉ khi \(\frac{1}{\left[\left(a\right)\left(b\right)\left(c\right)\right]}=666,6\) 

\(\Rightarrow Q\) đạt GTNN bằng 666,6 và khi a =b =c = 666,6

Ps: Giải chơi nhé! Đừng làm theo! Mình không chịu trách nhiệm hay bất cứ hình phạt nào như: Trừ điểm hỏi đáp, hack nic mình đâu nhé!

NM
9 tháng 8 2021

ta có \(4=2a^2+\frac{b^2}{4}+\frac{1}{a^2}=a^2+a^2+\frac{b^2}{4}+\frac{1}{a^2}\ge4\sqrt[4]{\frac{a^2.a^2.b^2}{4a^2}}\)

Vậy\(\sqrt[4]{\frac{a^2b^2}{4}}\le1\Leftrightarrow a^2b^2\le4\Leftrightarrow-2\le ab\le2\)

Vậy \(2007\le ab+2009\le2011\)

10 tháng 3 2017

ta có : 3-Q=\(\dfrac{2\left(a+b\right)^2}{a^2+ab+b^2}\)>=0

\(\Rightarrow\) Max Q=3

ta có : Q-\(\dfrac{1}{3}\)= \(\dfrac{2\left(a-b\right)^2}{3\left(a^2+ab+b^2\right)}\)>=0

\(\Rightarrow\)Min Q=\(\dfrac{-1}{3}\)

10 tháng 3 2017

Hãy dùng phương pháp tập thể dục như của Hung nguyen nhé

Theo bài ra , ta có :

\(Q=\dfrac{a^2-ab+b^2}{a^2+ab+b^2}=\dfrac{a^2+ab+b^2-2ab}{a^2+ab+b^2}=1-\dfrac{2ab}{a^2+ab+b^2}\)

Vì a,b đồng thời không bằng không ta chia cả tử và mẩu cho 2ab , ta được

\(\dfrac{2a}{a^2+ab+b^2}=\dfrac{1}{\dfrac{a^2}{2ab}+1+\dfrac{b^2}{2ab}}=\dfrac{1}{\dfrac{a}{2b}+1+\dfrac{b}{2a}}\)

Vì a,b khác 0 =) a/2b , b/2a khác 0

Áp dụng BĐT cô si cho 2 số a/2b , b/2a khác 0

\(\Rightarrow\dfrac{a}{2b}+\dfrac{b}{2a}\ge2\sqrt{\dfrac{a}{2b}.\dfrac{b}{2a}}\)

\(\Rightarrow\dfrac{a}{2b}+\dfrac{b}{2a}\ge2\sqrt{\dfrac{1}{2}}=\dfrac{1}{4}\)

\(\Rightarrow\dfrac{a}{2b}+1+\dfrac{b}{2a}\ge1+\dfrac{1}{4}=\dfrac{5}{4}\)

\(\Leftrightarrow\dfrac{1}{\dfrac{a}{2b}+1+\dfrac{b}{2a}}\le\dfrac{1}{\dfrac{5}{4}}=\dfrac{4}{5}\)

\(\Leftrightarrow1-\dfrac{1}{\dfrac{a}{2b}+1+\dfrac{b}{2a}}\le\dfrac{1}{5}\)

\(\Rightarrow Max_Q=\dfrac{1}{5}\Leftrightarrow\dfrac{a}{2b}=\dfrac{b}{2a}\Leftrightarrow\dfrac{a}{2b}-\dfrac{b}{2a}=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=0\Leftrightarrow\left[{}\begin{matrix}a=b\\a=-b\end{matrix}\right.\)

mà a và b là hai số khác 0 =) a = b

Vậy GTLN của Q là 1/5 khi và chỉ khi a = b