K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2016

Từ \(a^2+a+1=0\Rightarrow a\ne1\)\(\Rightarrow\left(a-1\right)\left(a^2+a+1\right)=0\Rightarrow a^3-1=0\Rightarrow a^3=1\)

Ta có \(a^{2011}+\frac{1}{2011}=a.a^{2010}+\frac{1}{a.a^{2010}}=a.\left(a^3\right)^{670}+\frac{1}{a.\left(a^3\right)^{670}}=a+\frac{1}{a}=\frac{a^2+1}{a}=\frac{-a}{a}=-1\)

Trong trường hợp này a không còn là số thực nữa mà a trong trường số phức .

12 tháng 10 2016

a2 + a + 1 = a2 + 2.a.0,5+ (0,5)2 + 0,75 = (a + 0,5)2 + 0,75 = 0

=> (a + 0,5)2 = -0,75 mà\(\left(a+0,5\right)^2\ge0\Rightarrow\)Ko có x thỏa mãn nên ko tính được tổng a2011 + 1/a2011

a: \(x^2-8x-33=0\)

a=1; b=-8; c=-33

Vì ac<0 nên phương trình có hai nghiệm phân biệt

b: \(A=3\left(x_1+x_2\right)^2-2x_1x_2=3\cdot8^2-2\cdot\left(-33\right)=192+66=258\)

 

5 tháng 3 2022

a.

-\(\Delta=\left(-8\right)^2-4.\left(-33\right)=64+132=196>0\)

Vậy pt luôn có 2 nghiệm phân biệt

-Giả sử: \(x_1;x_2\) là nghiệm của pt

Theo hệ thức vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-\left(-8\right)}{1}=\dfrac{8}{1}=8\\x_1.x_2=\dfrac{-33}{1}=-33\end{matrix}\right.\)

 

22 tháng 4 2020

delta= \(\left(-5\right)^2-4.2.\left(-1\right)=25+8=33>0..\)

=> pt có 2 nghiệm phân biệt 

Áp dụng hệ thức Vi-et:

\(\hept{\begin{cases}x_1+x_2=-\frac{5}{2}\\x_1x_2=\frac{-1}{2}\end{cases}}\)

A= \(x_1^2-2x_1-2x_2+x_2^2=x_1^2+x_2^2+2x_1x_2-2x_1x_2-2\left(x_1+x_2\right)..\)

\(\Leftrightarrow A=\left(x_1+x_2\right)^2-2x_1x_2-2\left(x_1+x_2\right)..\)

Thay vào A ta được: \(A=\left(-\frac{5}{2}\right)^2-2.\left(-\frac{1}{2}\right)-2.\left(-\frac{5}{2}\right).\)

                                        \(=\frac{25}{4}+1+5=\frac{49}{4}.\)

Học tốt

5 tháng 4 2019

Mik cần gấp vì chj nay phải đi hok.

24 tháng 2 2022

a) Thay \(x=0\) vào phương trình ta có:

\(\left(m-1\right).0^2-2m.0+m+1=0.\\ \Leftrightarrow m+1=0.\\ \Leftrightarrow m=-1.\)

b) Ta có: \(\Delta'=m^2-\left(m-1\right)\left(m+1\right).\)

 \(\Delta'=m^2-\left(m^2-1\right).\\ =m^2-m^2+1.\\ =1>0.\)

\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt \(x_1;x_2.\)

Theo Viet: \(\left\{{}\begin{matrix}x_1.x_2=\dfrac{m+1}{m-1}.\\x_1+x_2=\dfrac{2m}{m-1}.\left(1\right)\end{matrix}\right.\)

Theo đề bài: \(x_1.x_2=5.\)

\(\Rightarrow\dfrac{m+1}{m-1}=5.\\ \Leftrightarrow m+1=5m-5.\\ \Leftrightarrow4m-6=0.\\ \Leftrightarrow m=\dfrac{3}{2}.\)

Thay \(m=\dfrac{3}{2}\) vào \(\left(1\right):\)

\(x_1+x_2=\) \(\dfrac{2.\dfrac{3}{2}}{\dfrac{3}{2}-1}=\dfrac{3}{\dfrac{1}{2}}=6.\)

3 tháng 6 2015

+) Nếu a2 < 0 => a1 < 0 => tổng a1 + a2 < 0 trái với giả thiết

=> a2 > 0  => 0< a2<a3<a4<a5<a6

Mà a1.a2.a3.a4.a5.a6 <0 => a1 < 0 

Vì a1 + a2 > 0 => |a1| < |a2|

=> |a1| < |a2| < |a3| < |a4| < |a5| < |a6

=>6. |a1|  <  |a1| + |a2| + |a3|+|a4|+|a5|+|a6| = 21 => |a1| < 3,5 Mà |a1| > 0 và nguyên

=> |a1| = 1 hoặc 2 hoặc 3

+) Nếu  |a1| = 1 => a1 = -1 và   |a2| + |a3|+|a4|+|a5|+|a6| = 21 - 1 = 20  

Mà |a2| + |a3|+|a4|+|a5|+|a6|  = a2 + a3 + a4 + a5 + a6 

=> a1 + a2 + a3 + a4 + a5 + a6. = -1 + 20 = 19

+) Nếu |a1| = 2 => a1 = - 2 và   |a2| + |a3|+|a4|+|a5|+|a6| = 19

=>  a1 + a2 + a3 + a4 + a5 + a6. = -2 + 19 = 17

+) Nếu |a1| = 3 => a1 = - 3 và   |a2| + |a3|+|a4|+|a5|+|a6| = 18

=>  a1 + a2 + a3 + a4 + a5 + a6. = - 3 + 18 = 15

Vậy.................

5 tháng 6 2015

ĐÁP SỐ: a1 + a2 + a3 + a4 + a5 + a6 = 19

LỜI GIẢI:

Nhận thấy: |a1| + |a2| + |a3|+|a4|+|a5|+|a6|=21 = 1+2+3+4+5+6 suy ra { |a1|;|a6|} = {1;6}

Do a1.a2.a3.a4.a5.a6 <0 suy ra số lượng phần tử số nguyên âm là 1, hoặc 3, hoặc 5 phần tử.

Từ giả thiết: tổng của hai số bất kì trong các số đó là số dương ta suy ra 2 điều:

(1) Không có nhiều hơn 1 số nguyên âm.

(2) Giá trị tuyệt đối của số nguyên âm đó là nhỏ nhất.

Vậy ta tìm được giá trị các số nguyên phù hợp:

a1 =-1

a2 = 2

a3 = 3

a4 = 4

a5 = 5

a6 = 6

KẾT LUẬN: a1 + a2 + a3 + a4 + a5 + a6 = 19.

Bạn thử giải toán trên trang này xem nhé

AH
Akai Haruma
Giáo viên
8 tháng 6 2021

Lời giải:

a) $\Delta'=m^2-(m-1)=m^2-m+1=(m-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$

b) 

Theo định lý Viet:

$x_1+x_2=2m$
$x_1x_2=m-1$

c) 

$A=2mx_1+x_2^2-2mx_2-x_1^2+1$

$=2m(x_1-x_2)+x_2^2-x_1^2+1$

$=(x_1+x_2)(x_1-x_2)+x_2^2-x_1^2+1$

$=x_1^2-x_2^2+x_2^2-x_1^2+1$

$=1$

 

$=

28 tháng 5 2015

a) x = 0 là nghiệm của phương trình

=> (m-1).02 -2.m.0 + m + 1 = 0

<=> m + 1 = 0 <=> m = -1

vậy m = -1 thì pt có nghiệm là x = 0

b) PT có 2 nghiệm thì trước hết pt đã cho là phương trình bậc 2 <=> m - 1\(\ne\) 0 <=> m \(\ne\)1

 \(\Delta\)' = (-m)2 - (m - 1)(m +1) = m2 - (m2 - 1) = 1 > 0

=> phương trình đã cho có 2 nghiệm là:

x1 = \(\frac{m+1}{m-1}\) ; x2 = \(\frac{m-1}{m-1}\) = 1

+) Để x1 .x2 = 5 <=> \(\frac{m+1}{m-1}\) = 5 <=> m +1 = 5( m - 1)

<=> m +1 = 5m - 5

<=> 6 = 4m <=> m = 3/2 (Thoả mãn)

+) Khi đó x1  + x2 = \(\frac{m+1}{m-1}\) + 1 = \(\frac{m+1+m-1}{m-1}=\frac{2m}{m-1}=\frac{2.\frac{3}{2}}{\frac{3}{2}-1}=\frac{3}{\frac{1}{2}}=6\)

21 tháng 5 2020

Mình không đồng ý với phần tìm đen-ta của bạn Trần Thị Loan

Phương trình (m-1)x2 - 2mx + m + 1 = 0 ( a=m-1; b=-2m; c=m+1)

​đen-ta = (-2m)2 - 4.(m-1).(m=1)=4

Vì đen-ta = 4 > 0 nên phương trình có 2 nghiệm phân biệt với mọi m