Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\cap B=\varnothing\Leftrightarrow m< 2\)
\(A\cap B\ne\varnothing\Leftrightarrow m\ge2\)
\(A\in B\Leftrightarrow m\ge4\)
\(A\cap B\ne\varnothing\Leftrightarrow\left[{}\begin{matrix}m+1< 2m-1< m+3\\m+1< 2m< m+3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2< m< 4\\1< m< 3\end{matrix}\right.\) \(\Rightarrow1< m< 4\)
Câu 1:
Bạn vẽ trục số 1 cái trên 1 cái dưới cho dễ tưởng tượng
Khi đó, để \(A\cap B=\oslash\) thì có 2 khả năng xảy ra:
\(n\leq -5\) hoặc \(n-2>9\Leftrightarrow n> 11\)
Vậy $n\leq -5$ hoặc $n> 11$
Ngược lại. Để \(A\cap B\neq \oslash\) thì \(n> -5\) hoặc $n< 11$
Câu 2:
Tương tự câu 1: Để \(M\cap N\neq \oslash \Rightarrow m+1\leq 1\) hoặc \(m\geq 3\)
Hay \(m\leq 0\) hoặc $m\geq 3$
Câu 3:
Để \(A\cap B\neq \oslash \) thì \(x+2\leq 2\) hoặc $x\geq 5$
hay \(x\leq 0\) hoặc $x\leq 5$
a.
\(A\cap B=\varnothing\Leftrightarrow\left[{}\begin{matrix}m+4< -5\\m>11\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m< -9\\m>11\end{matrix}\right.\)
b.
\(A\cap B\ne\varnothing\Leftrightarrow-9\le m\le11\)
Để A giao B khác rỗng thì \(7-4m< =4-m\)
=>-3m<=-3
=>m>=1
=>Chọn A
Dễ thấy nếu \(A\cap B=\varnothing\Rightarrow A\in[-3;3)\Rightarrow\left\{{}\begin{matrix}m-1\ge-3\\\dfrac{m+3}{2}< 3\end{matrix}\right.\)
\(\Leftrightarrow-2\le m< 3\)
Do đó để \(A\cap B\ne\varnothing\Rightarrow m\notin[-2;3)\Rightarrow\left[{}\begin{matrix}m< -2\\m\ge3\end{matrix}\right.\)
\(A=\left(-3;-1\right)\cup\left(1;2\right)\)
\(B=\left(-1;+\infty\right)\)
\(C=\left(-\infty;2m\right)\)
\(A\cap B=\left(-3;-1\right)\)
Để \(A\cap B\cap C\ne\varnothing\Leftrightarrow2m\ge-1\)
\(\Leftrightarrow m\ge-\dfrac{1}{2}\)
Vậy \(m\ge-\dfrac{1}{2}\) thỏa đề bài
Lời giải:
$A\cap B\cap C=A\cap (B\cap C)$
Để tập hợp trên khác rỗng thì trước hết $B\cap C\neq \varnothing$
Điều này xảy ra khi $2m>m\Leftrightarrow m>0$
Khi đó: $B\cap C=(m; 2m)$
$\Rightarrow A\cap B\cap C=((-3;-1)\cup (1;2))\cap (m; 2m)$
$=((-3;-1)\cap (m;2m))\cup ((1;2)\cap (m; 2m))$
$=(1;2)\cap (m; 2m)$ (do $m>0$)
Để $(1;2)\cap (m; 2m)\neq \varnothing$ thì:
\(\left\{\begin{matrix} 2m>1\\ m< 2\end{matrix}\right.\Leftrightarrow m\in (\frac{1}{2};2)\)
Vậy...........