K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PA
1
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DT
0
VA
0
PN
14 tháng 7 2020
Áp dụng Bất đẳng thức Cauchy cho 3 số thực dương ta có :
\(a^2b+b^2c+c^2a\ge3\sqrt[3]{a^2bb^2cc^2a}=3\sqrt[3]{a^3b^3c^3}=3abc\)
Khi đó :\(P\ge3abc=\left(a+b+c\right)\left(abc\right)\)
...
VN
1
8 tháng 11 2018
\(A=\dfrac{a^2}{1}+\dfrac{b^2}{1}+\dfrac{c^2}{1}\ge\dfrac{\left(a+b+c\right)^2}{3}=\dfrac{4}{3}\)
Dấu = xảy ra khi \(a=b=c=\dfrac{2}{3}\)
vậy \(A_{min}=\dfrac{4}{3}\)
1 tháng 1 2019
\(a^2+b^2+c^2\ge2\left(ab+bc+ac\right)=2\times9=18\)
T
0
N
4
18 tháng 9 2017
ĐỀ sai rồi bn ơi
neu x ; y > 0 thi ms tim dc max chu
đề sai nha
NT
27 tháng 3 2016
Ta có 1/4(a+b)=a^2+b^2-ab>=(a+b)^2-3((a+b)^2/4)=(a+b)^2/4
=>0=<a+b=<1
Mặt khác A=<20(a+b)(a^2+b^2-ab)-6((a+b)^2/2)+2013
=>A=<20(a+b)((a+b)/4)-3(a+b)^2+2013=2(a+b)^2+2013=<2015
=>Amin=2015 khi a=b=1/2
Đặt \(P=a+b+c\)
\(P^2=\left(a+b+c\right)^2=\left(1.a+\dfrac{1}{2}.2b+\dfrac{1}{3}.3c\right)^2\le\left(1^2+\left(\dfrac{1}{2}\right)^2+\left(\dfrac{1}{3}\right)^2\right)\left(a^2+4b^2+9c^2\right)\)
\(\Rightarrow P^2\le\dfrac{49}{36}\left(a^2+4b^2+9c^2\right)=\dfrac{49}{36}\)
\(\Rightarrow-\dfrac{7}{6}\le P\le\dfrac{7}{6}\)
\(P_{min}=-\dfrac{7}{6}\) khi \(\left(a;b;c\right)=\left(-\dfrac{6}{7};-\dfrac{3}{14};-\dfrac{2}{21}\right)\)
\(P_{max}=\dfrac{7}{6}\) khi \(\left(a;b;c\right)=\left(\dfrac{6}{7};\dfrac{3}{14};\dfrac{2}{21}\right)\)