K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2017

a/ \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left[a+1\right]\left[a^2+a-1\right]}{\left[a+1\right]\left[a^2+a+1\right]}=\frac{a^2+a-1}{a^2+a+1}\)

 b.Gọi d là ước chung lớn nhất của a2 + a – 1 và a2+a +1.

Vì a2 + a – 1 = a(a+1) – 1 là số lẻ nên d là số lẻ

Mặt khác, 2 = [ a2+a +1 – (a2 + a – 1) ] d

Nên d = 1 tức là a2 + a + 1 và a2 + a – 1 nguyên tố cùng nhau.

 Vậy biểu thức A là phân số tối giản.

27 tháng 2 2016

a) 6/n + 2 rút gọn được

UCLN(6 , n + 2) > 1

Vậy khi UCLN( 6 , n + 2) thuộc U(6) = {-6 ; -3;  -2 ; - 1 ; 1 ; 2 ; 3 ; 6}

b) 6 chia hết cho n + 2

n + 2 thuộc U(6) = {-6 ; -3 ; -2 ; - 1 ; 1;  2;  3;  ;6}

Vậy n thuộc {-8 ; -5 ; -4 ; -3 ; -1 ; 0 ; 1 ; 4}

19 tháng 8 2017

Ta có:

\(A=2^1+2^2+2^3+...+2^{100}\)

\(\Rightarrow2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)

\(\Rightarrow A.\left(2-1\right)=2^2+2^3+2^4+...+2^{101}-2^1-2^2-2^3+...+2^{100}\)

\(\Rightarrow A=\left(2^2-2^2\right)+\left(2^3-2^3\right)+\left(2^4-2^4\right)+...+\left(2^{100}-2^{100}\right)+\left(2^{101}-2^1\right)\)

\(\Rightarrow A=2^{101}-2\Leftrightarrow A=2^x-2\Leftrightarrow x=101\)

19 tháng 8 2017

@Phúc Trần Tấn | Em biết làm ý A rồi nhưng không biết làm ý B.!!

13 tháng 12 2015

a) Xin lỗi bạn nhé !!!

 b) 2010^2 và 2009.2011 
<=> (2009+1).2010 và 2009.(2010+1) 
<=> 2009.2010+2010 > 2009.2010+2009 

=> 2010^2 > 2009 . 2011

c) 

\(3^{450}=3^{3\cdot150}=\left(3^3\right)^{150}=27^{150}\)

\(5^{300}=5^{2\cdot150}=\left(5^2\right)^{150}=25^{150}\)

Vì \(27^{150}>25^{150}\)

Nên \(3^{450}>5^{300}\)

13 tháng 12 2015

a) A = 2 + 22 + ... + 22010

       = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )

       = 2.(1+2) + 23.(1+2) + ... + 22009.(1+2)

       = 2.3 + 23.3 + ... + 22009.3 chia hết cho 3

   A = 2 + 22 + ... + 22010

      = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 22008 + 22009 + 22010 )

      = 2.(1+2+22) + 24.(1+2+22) + ... + 22008.(1+2+22)

      = 2.7 + 24.7 + ... + 22008.7 chia hết cho 7

b) Xét A = 2009.2011

             = (2010-1) . (2010+1)

             = 2010.2010 + 1.2010 - 1.2010 - 1.1

             = 2010.2010 - 1

          B = A - 1

Vậy B < A

c) Ta có : 3450 = 35.90 = 1590

                   5300 = 53.100 = 15100

Vì 1590 < 15100 nên 3450 < 5300 hay A < B