K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2020

A = 2 + 22 + 23 + ...+ 299  + 2 100 

A = ( 2 + 22 ) + ( 23  + 24 ) + ... + ( 299 + 2100 )

A = 2(1+2) + 23(1+2) + ...+ 299(1+2)

A = 2.3 + 23 .3 + ...+ 299.3 

A = 3( 2 + 23 + ...+299\(⋮\) 3 

=> Vây A chia hết cho 3

22 tháng 12 2023

Sửa đề: \(A=2^0+2^1+2^2+...+2^{99}\)

\(=\left(2^0+2^1\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)

\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{98}\left(1+2\right)\)

\(=3\left(1+2^2+...+2^{98}\right)⋮3\)

17 tháng 12 2017

a) S = 2 + 22 + 23 + 24 +.....+ 29 + 210

   = (2 + 22) + (23 + 24) +.....+ (29 + 210)

   = 2(1 + 2) + 23(1 + 2) +....+ 29(1 + 2)

   = 3.(2 + 23 +.... + 29) chia hết cho 3

   => S = 2 + 22 + 23 + 24 +.....+ 29 + 210 chia hết cho 3 (Đpcm)

b) 1+32+33+34+...+399

=(1+3+32+33)+....+(396+397+398+399)

=40+.........+396.40

=40.(1+....+396) chia hết cho 40 (đpcm)

17 tháng 12 2017

ai trả lời giúp mình mình k cho

21 tháng 1 2021

                                                                          lg

a)C=3+3^2+3^3+...+3^100

=(3+3^2+3^3+3^4)+...+(3^96+3^97+3^98+3^99+3^100)

=(3.1+3.3+3.3^2+3.3^3)+...+(3^96.1+3^96.3+3^96.3^2+3^96.3^3)

=3.(1+3+3^2+3^3)+...+3^96.(1+3+3^2+3^3)

=3.40+...+3^96.40

=40.(3+...+3^96) chia hết cho 40

=>C chia hết cho 40

Vậy C chia hết cho 40

phần b làm tương tự

5 tháng 2 2021

a, sai đề 

b,Ta có :

C=2+2^2+2^3+2^4+2^5...+2^96+2^97+2^98+2^99+2^100

   = (2+2^2+2^3+2^4+2^5)+...+(2^96+2^97+2^98+2^99+2^100)

  = (2.1+2.2+2.2^2+2.2^3+2.2^4)+...+(2^96.1+2^96.2+2^96.2^2+2^96.2^3+2^96.2^4)

  =2. (1+2+2^2+2^3+2^4) +...+2^96.(1+2+2^2+2^3+2^4)

  =2.31+...+2^96.31

  =31. (2+...+2^96) chia hết cho 31

=>C chia hết cho 31

21 tháng 12 2022

`A=4+4^2+4^3+...+4^98 +4^99`

`A=(4+4^2+4^3)+...+(4^97 +4^98 +4^99)`

`A=4(1+4+4^2)+...+4^97 (1+4+4^2)`

`A=4.21+...+4^97 .21`

`A=21.(4+4^97)  \vdots 21`

   `=>Đpcm`

23 tháng 10 2015

TA CÓ:

A=30+3+32+33+........+311

(30+3+32+33)+....+(38+39+310+311)

3(0+1+3+32)+......+38(0+1+3+32

3.13+....+38.13 cHIA HẾT CHO 13 NÊN A CHIA HẾT CHO 13( đpcm)

 

4 tháng 8 2021
Fikj Hrtui
17 tháng 1 2017

nì !!!!!! chinh :)

Đầu tiên bn phải chứng minh chia hết cho 5 và 31 vì 5 và 31 là 2 số nguyên tố cùng nhau
Chứng minh chia hết cho 5
2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+......+2^97(1+2+2^2+2^3)
=2.15+2^5.15+....+2^97.15 suy ra chia hết cho 5 vì 15 chia hết cho Tương tự cx làm chia hết cho 31 lần lượt là
2(1+2+2^2+2^3+2^4)+2^6(1+2+2^2+2^3+2^4)+…+2^96(1+2+2^2+2^3+2^4)
=2.31+2^6.31+2^96.41 suy ra chia hết cho 31 mà 31 và 5 là hai số nguyên tố cùng nhau nên nó chia hết cho 31.5=155

18 tháng 1 2017

- Ôi <3

Bài 1:

=(1-2)(1+2)+(3-4)(3+4)+...+(99-100)(99+100)+101^2

=101^2-(1+2+3+...+99+100)

=101^2-100*101/2=5151

18 tháng 11 2018


 

\(A=\left(2+2^2\right)+...+\left(2^{99}+2^{100}\right)\)

\(A=2\cdot\left(1+2\right)+...+2^{99}\cdot\left(1+2\right)\)

\(A=2\cdot3+...+2^{99}\cdot3\)

\(A=3\cdot\left(2+...+2^{99}\right)⋮3\left(đpcm\right)\)

2 ý kia tương tự

18 tháng 11 2018

Giải:

Đặt S=(2+2^2+2^3+...+2^100)

=2.(1+2+2^2+2^3+2^4)+2^6.(1+2+2^2+2^3+2^4)+...+(1+2+2^2+2^3+2^4).296

=2.31+26.31+...+296.31

=31.(2+26+...+296)\(⋮\)31

27 tháng 4 2017

Tổng các số hạng của S là 99 số hạng.

a/ Nhóm 3 số hạng liên tiếp với nhau, ta được 33 nhóm như sau:

S=(2+22+23)+....+(297+298+299)=2(1+2+22)+24(1+2+22)+...+297(1+2+22)

=> S=2.7+24.7+...+297.7=7(2+24+297)

=> S chia hết cho 7

b/ 

27 tháng 4 2017

S=1-1+2+22+23+...+299=(1+2+22+23+...+299)-1

Tổng các số hạng trong ngoặc là 100 số hạng. Nhóm 5 số hạng liên tiếp với nhau ta được:

S=(1+2+22+23+24)+25(1+2+22+23+24)+...+295(1+2+22+23+24)-1

S=31.(1+25+...+295)-1

=> S+1=31.(1+25+...+295) => S+1 chia hết cho 31

=> S không chia hết cho 31