Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TH1 :\(A=2+2^2+...+2^{60}\)
\(=\left(2+2^2\right)+...+\left(2^{59}+2^{60}\right)\)
\(=2\left(1+2\right)+...+2^{59}\left(1+2\right)\)
\(=2.3+...+2^{59}.3⋮3\)
TH2:\(A=2+2^2+...+2^{60}\)
\(=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=2.7+...+2^{58}.7⋮7\)
TH3 :\(A=2+2^2+2^3+...+2^{59}+2^{60}\)
\(=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)
\(=2\left(1+2+2^2+2^3\right)+...+2^{57}\left(1+2+2^2+2^3\right)\)
\(=2.15+...+2^{57}.15⋮15\)
\(\Rightarrow\hept{\begin{cases}A⋮3\\A⋮7\\A⋮15\end{cases}}\)
\(A=2+2^2+2^3+...+2^{60}\)
\(A=2.\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}.\left(1+2\right)\)
\(A=2.3+2^2.3+...+2^{59}.3\)
Vì các số hạng của tổng trên đều chia hết cho 3 nên suy ra A chia hết cho 3
Các câu sau cx y zậy nhé,chỉ khác là gộp thêm nhiều số hạng lại thui
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
A = 2 + 22 + 23 + 24 + ... + 260
A = (2 + 22) + (23 + 24) + ... + ( 259 + 260)
A = 1.(2 + 22) + 22(2 + 22) + ...+ 258.(2 + 22)
A = 1 . 6 + 22 . 6 + ... + 258 . 6
A = 6 . (1 + 22 +... + 258) \(⋮\)3
Vậy A \(⋮\)3.
~~~
Mấy phần kia làm tương tự nhé.
#Sunrise
A = 2 + 22 + 23 + 24 + ... + 260
A = ( 2 + 22 + 23 + 25 ) + ... + ( 257 + 258 + 259 + 260 )
A = 2.( 1 + 2 + 4 + 8 ) + ... + 257.( 1 + 2 + 4 + 8 )
A = 2 . 15 + ... + 257 . 15 chia hết cho cả 3 và 5
Làm tương tự với A chia hết cho 7 ta nhóm ba số liên tiếp với nhau
A = 2 + 22+ 23 + .......... + 260 = ( 2 + 22) + ( 23+ 24) + .... + ( 259+ 260)
A= 2 . ( 2 + 1 ) + 23 . ( 2 + 1 ) + ..... + 259. ( 2 + 1 )
A = 3. ( 2 + 23+ ...... + 259)
\(\Rightarrow A⋮3\)
A = 2 + 22+ 23 + .......... + 260
A = ( 2 + 22+ 23 ) + ( 24+ 25+ 26) + ....... + ( 258+ 259+ 260)
A = 2 . ( 1 + 2 + 22) + 24( 1 + 2 + 22) + ........ + 258( 1 + 2 + 22)
A = 7 . ( 2 + 24 + ....... + 258)
\(\Rightarrow A⋮7\)
A = 2 + 22+ 23+ ........ + 260
A = ( 2 + 22+ 23+ 24) + ( 25+ 26+ 27+ 28) + ........ + ( 257+ 258+ 259+ 260)
A= 2 ( 1 + 2 + 22+ 23) + 25( 1 + 2 + 22 + 23) + ..... + 257( 1 +2 + 22+ 23 )
A = ( 1 + 2 + 22+ 23) . ( 2 + 25 + ........ + 257)
A = 15 ( 2 + 25 + ........ + 257)
A = 2 + 22 + 23 +......+ 260
-> A = ( 2 + 22 ) + ( 23 + 24 ) + ....+ ( 259 + 260 )
-> A = 2.( 1+2 ) + 23.( 1+2) +......+ 259.( 1+2)
-> A = 2.3 + 23.3 +......+ 259.3
-> A= 3.( 2 + 23 +.....+ 259)
Vì 3 chia hết cho 3
-> 3.( 2 + 23 +...+259)
Vậy A chia hết cho 3
A = 2 + 22 + 23 +.......+ 260
-> A = ( 2 + 22 + 23 ) +.......+ ( 258 + 259 + 260 )
-> A = 2.( 1 + 2 + 22 ) +......+ 258 .( 1 + 2 + 22 )
-> A = 2.7 +.....+ 258.7
-> A = 7.( 2 + .....+ 258 )
Vì 7 chia hết cho 7
-> 7.( 2+....+ 258 )
Vậy A chia hết cho 7
A = 2 + 22 + 23 +......+ 260
-> A = ( 2 + 22 + 23 + 24 ) +.....+ ( 257 + 258 + 259 + 260 )
-> A = 2.( 1 + 2 + 22 + 23 ) +.....+ 257.( 1+ 2 + 22 + 23 )
-> A = 2.15 + ......+ 257.15
-> A = 15.( 2 +.... + 257 )
Vì 15 chia hết cho 15
-> 15.( 2 +....+ 257 )
Vậy A chia hết cho 15
A = 2 + 22 + 23 +...+ 260
A = (2+22) + (23 + 24) + ...+ (259 + 260)
A = 2.(1+2) + 23.(1+2) + ...+ 259.(1+2)
A = 2.3 + 23.3 + ....+ 259.3
A = 3.(2+23 +...+259) chia hết cho 3
..
các bài còn lại bn dựa zô mak lm\
\(A=2+2^2+2^3+...+2^{60}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)
\(A=6+2^2\left(2+2^2\right)+...+2^{58}\left(2+2^2\right)\)
\(A=6\cdot1+2^2\cdot6+...+2^{58}\cdot6\)
\(A=6\cdot\left(1+2^2+...+2^{58}\right)⋮3\)
CMTT
1/A=1.21.22.23.24.25 câu 2 làm tương tự
A.2=2.22.23.24.25.26
A.2-A=(2.22.23.24.25.2 mũ 6)-(1.21.22.23.24.25)
A=26-1
3 A=1+3+32+33+...37
3.A=3+32+33+34...+38
2A=38-1
A=(38-1):2
Giải:
\(A=\text{( }2^1+2^2+2^3\text{)}+\left(2^4+2^5+2^6\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)
\(A=2^1.\left(1+2+2^2\right)+2^4.\left(1+2+2^2\right)+...+2^{58}.\left(1+2+2^2\right)\)
\(A=2.7+2^4.7+...+2^{58}.7\)
\(A=7.\left(2+2^4+2^{58}\right)⋮7\)
\(\Rightarrow A=2^1+2^2+2^3+2^4+....+2^{59}+2^{60}\) chia hết cho \(7\)
\(\Rightarrow A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+....+\left(2^{58}+2^{59}+2^{60}\right)\)
\(\Rightarrow A=2^1\left(1+2+4\right)+2^4\left(1+2+4\right)+...+2^{58}\left(1+2+4\right)\)
\(\Rightarrow A=2^1.7+2^4.7+...+2^{58}.7\)
\(\Rightarrow A=7\left(2^1+2^4+...+2^{58}\right)\)
\(\Rightarrow\)A chia hết cho 7 vì tích có chứ thừa số 7
Vậy A chia hết cho 7