K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2015

A=(2+2^2)+...+(2^59+2^60) 
=2(1+2)+...+2^59(1+2) 
=3(2+2^3+...+2^59) 
nên A chia hết cho 3. 
A= (2+2^2+2^3)+...+(2^58+2^59+2^60) 
=2(1+2+2^2)+...+2^58(1+2+2^2) 
=7(2+2^4+..+2^58) 
nên A chia hết cho 7 
A= (2+2^2+2^3+2^4)+....+(2^57+2^58+2^59+2^6... 
=2(1+2+2^2+2^3)+....+2^57(1+2+2^2+2^3)... 
=15(2+2^5+...+2^57) 
nên A chia hết cho 15

6 tháng 10 2023

\(S=1+2+2^2+2^3+...+2^{59}\)

\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{58}+2^{59}\right)\)

\(S=3+2^2\cdot3+...+2^{58}\cdot3\)

\(S=3\cdot\left(1+2^2+...+2^{58}\right)\)

S chia hết cho 3

_____

\(S=1+2+2^2+...+2^{59}\)

\(S=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{57}+2^{58}+2^{59}\right)\)

\(S=7+7\cdot2^3+...+7\cdot2^{57}\)

\(S=7\cdot\left(1+2^3+...+2^{57}\right)\)

S chia hết cho 7 

_____

\(S=1+2+2^2+2^3+...+2^{59}\)

\(S=\left(1+2+2^2+2^3\right)+\left(2^4+2^5+2^6+2^7\right)+...+\left(2^{56}+2^{57}+2^{58}+2^{59}\right)\)

\(S=15+2^4\cdot15+...+2^{56}\cdot15\)

\(S=15\cdot\left(1+2^4+...+2^{56}\right)\)

S chia hết cho 15 

19 tháng 7 2015

- Chia hết cho 3:

A=(2+2^2)+(2^3+2^4)+.........+(2^59+2^60)

A=2.(2+1)+2^3.(2+1)+..........+2^59(2+1)

A=2.3+2.2^3+........+2^59.3

A=(2+2^3+.......+2^59).3

Vậy A chia hết cho 3

- Chia hết cho 7:làm như trên (ghép 3 số)

- Chia hết cho 15:làm như trên (ghép 4 số)

Nhớ tích đúng cho mình nha

19 tháng 7 2015

* Ta có:  A = \(2+2^2+2^3+...+2^{60}=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

        =  \(\left(2+2^2\right)+\left(2+2^2\right)\times2^2+...+\left(2+2^2\right)\times2^{58}\)

        = \(6+6\times2^2+...+6\times2^{58}\)

        = \(6\times\left(1+2^2+...+2^{58}\right)\)

         = \(2\times3\times\left(1+2^2+...+2^{58}\right)\)    chia hết cho 3

  =>  A chia hết cho 3
 

* Ta có:  A = \(2+2^2+2^3+...+2^{60}=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

        =  \(\left(2+2^2+2^3\right)+...+\left(2+2^2+2^3\right)\times2^{57}\)

        = \(14+...+14\times2^{57}\)

        = \(14\times\left(1+...+2^{57}\right)\)

         = \(2\times7\times\left(1+...+2^{57}\right)\)    chia hết cho 7

  =>  A chia hết cho 7

Ta có:  A = \(2+2^2+2^3+...+2^{60}=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

        =  \(\left(2+2^2+2^3+2^4\right)+...+\left(2+2^2+2^3+2^4\right)\times2^{56}\)

        = \(30+...+30\times2^{56}\)

        = \(30\times\left(1+...+2^{56}\right)\)

         = \(2\times15\times\left(1+...+2^{56}\right)\)    chia hết cho 15

  =>  A chia hết cho 15

Nhấn đúng cho mk nha!!!!!

14 tháng 12 2022

a: \(2A=2^2+2^3+...+2^{61}\)

=>A=2^61-2

b: \(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)

\(=7\left(2+2^4+...+2^{55}+2^{58}\right)\) chia hết cho 7(1)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)=3\left(2+2^3+...+2^{59}\right)⋮3\left(2\right)\)

Từ (1), (2) suy ra A chia hết cho 21

23 tháng 7 2016

 

a,10^33+8 chia hết cho 18 

1033 + 8 = 10...000 ( 33 chữ số 0 ) + 8 = 10...008 ( 32 chữ số 0 ) , có :

- Chữ số tận cùng 8 chia hết cho 2 . ( 1 )

- Tổng các chữ số : 1 + 0 +...+ 0 + 0 + 8 = 9 chia hết cho 9 . ( 2 )

Từ ( 1 ) và ( 2 ) => 10^33 + 8 chia hết cho 18 .

 

b,10^10+14 chia hết cho 6

1010 + 14 = 10...000 ( 10 chữ số 0 ) + 14 = 10...014 ( 8 chữ số 0 ) , có :

- Chữ số tận cùng 4 chia hết cho 2 . ( 1 )

- Tổng các chữ số : 1 + 0 +...+ 0 + 1 + 4 = 6 chia hết cho 3 . ( 2 )

Từ ( 1 ) và ( 2 ) => 10^10 + 14 chia hết cho 6 .

Còn lại bn tự làm nha .  Kinh.gif

 

 

 

 

23 tháng 7 2016

Ta có

+)  \(10^{33}+8=100......00000008⋮9\)      (1)

                        ( 33 chữ số 0 )

+)  1033 chia hết cho 2

      8 chia hết cho 2

=> 1033+8 chia hết cho 2 (2)

Mà (2;3)=1

Từ (1) và (2) => \(10^{33}+8⋮2.9=18\)

b) Ta có

+) \(10^{10}+14=100...014⋮3\) (4)

                      ( 9 chữ số 0)

+) 1010 chia hết cho 2

       14 chia hết cho 2

=> 1010+14 chia hết cho 2 (4)
Mà (2;3)=1

Từ (1) và (2)

=>\(10^{10}+14⋮2.3=6\)

c)

MÌnh sửa một chút 119=>119

Có lẽ do đánh vội nên bạn viết sai :))

Ta thấy A có 20 số hạng

Mà mỗi số hạng đều có tận cùng là 1

=>\(A=\left(\overline{....1}\right)+\left(\overline{....1}\right)+.....+\left(\overline{....1}\right)=\left(\overline{....20}\right)\)

chia hết cho 5

d)

\(B=2\left(1+2\right)+2^3\left(1+2\right)+....+2^{59}\left(1+2\right)=3\left(2+2^3+....+2^{59}\right)⋮3\left(5\right)\) 

\(B=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)=7\left(2+2^4+....+2^{58}\right)⋮7\)

\(B=2\left(1+2^2\right)+2^2\left(1+2^2\right)+....+2^{58}\left(1+2^2\right)=5\left(2+2^2+...+2^{58}\right)⋮5\left(6\right)\)

Mà (3;5)=1

Từ (5) và (6)

=>\(B⋮3.5=15\)

28 tháng 2 2022

Đề sai, viết lại thành:

A= 21+22+23+24+...+259+260

Giải:

A=21+22+23+...............+259+260

A=(21+22+23)+...............+(258+259+260)

A=2.(1+2+22)+............+258.(1+2+22)

A=2.7+.......................+258.7

A=(2+24+..............+258).7 ⋮ 7(đpcm)

28 tháng 2 2022

umk

5 tháng 10 2021

A= (2+22)+(23+24)+...+(259+260)
A=2.(1+2)+23.(1+2)+...+259.(1+2)
A=2.3+23.3+...+259.3
A=3.(2+23+...+259)
Vì 3 chia hết cho 3 => 3.(2+23+...+259)  chia hết cho 3
=>A  chia hết cho 3
A= (2+22+23)+...+(258+259+260)
A=2.(1+2+22)+...+258.(1+2+22)
A=2.7+...+258.7
A=7.(2+...+258)
Vì 7  chia hết cho 7 =>7.(2+...+258)  chia hết cho 7

CHIA HẾT CHO 3 :

A= (2+22)+(23+24)+...+(259+260)

A=2.(1+2)+23.(1+2)+...+259.(1+2)

A=2.3+23.3+...+259.3

A=3.(2+23+...+259)

Vì 3 chia hết cho 3 => 3.(2+23+...+259) chia hết cho 3

=>A chia hết cho 3


 

4 tháng 11 2021

dcv